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Probe-based bacterial single-cell RNA 
sequencing predicts toxin regulation

Ryan McNulty1,2,9, Duluxan Sritharan    3,4,9, Seong Ho Pahng5,4, Jeffrey P. Meisch1, 
Shichen Liu4, Melanie A. Brennan1, Gerda Saxer1, Sahand Hormoz    4,6,7   
& Adam Z. Rosenthal    1,8 

Clonal bacterial populations rely on transcriptional variation across 
individual cells to produce specialized states that increase fitness. 
Understanding all cell states requires studying isogenic bacterial 
populations at the single-cell level. Here we developed probe-based 
bacterial sequencing (ProBac-seq), a method that uses libraries of DNA 
probes and an existing commercial microfluidic platform to conduct 
bacterial single-cell RNA sequencing. We sequenced the transcriptome 
of thousands of individual bacterial cells per experiment, detecting 
several hundred transcripts per cell on average. Applied to Bacillus subtilis 
and Escherichia coli, ProBac-seq correctly identifies known cell states 
and uncovers previously unreported transcriptional heterogeneity. In 
the context of bacterial pathogenesis, application of the approach to 
Clostridium perfringens reveals heterogeneous expression of toxin by a 
subpopulation that can be controlled by acetate, a short-chain fatty acid 
highly prevalent in the gut. Overall, ProBac-seq can be used to uncover 
heterogeneity in isogenic microbial populations and identify perturbations 
that affect pathogenicity.

Bacterial traits such as competence, sporulation and motility have 
been shown to be both heterogeneously utilized in populations and 
tightly controlled at the transcriptional level, emphasizing the need 
for single-cell transcriptional analyses1–3. However, tools for single-cell 
RNA sequencing (scRNA-seq) of bacterial populations remain limited 
due to several substantial technical challenges. First, total bacterial 
messenger RNA (mRNA) abundance is two orders of magnitude lower 
than that of eukaryotes, with a single bacterial cell containing approxi-
mately 103–104 transcripts during exponential growth4. Second, tran-
scriptional turnover is much faster in bacteria, with an mRNA half-life 
on the scale of minutes, compared with hours in eukaryotes4. Third, 
bacterial transcripts do not intrinsically include a 3′ poly-adenosine tail 

and, therefore, mRNA cannot easily be tagged and selectively enriched 
against ribosomal RNA, which makes up more than 90% of the bacterial 
transcriptome4. Lastly, accessing mRNA requires cell permeabilization, 
which is difficult in bacteria due to the diversity in membrane structures 
and variability of the peptidoglycan layer.

We reasoned that a method combining the advantages of micro-
fluidic single-cell barcoding in droplets with the ability to tag tran-
scripts using in situ hybridization of oligonucleotide probes could 
overcome these challenges and offer advantages over alternative 
approaches5–7. Here we present a method called probe-based bacte-
rial sequencing (ProBac-seq) for prokaryotic scRNA-seq, which uses 
a commercial, benchtop microfluidic device (Chromium Controller 
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Bacterial scRNA-seq validation
To determine if suspended probe libraries can report on the transcrip-
tional state of cells, we split a culture of B. subtilis cells in a late exponen-
tial state into two aliquots of approximately 108 formaldehyde-fixed 
cells each. One aliquot was processed using a traditional RNA-seq 
protocol (Methods), whereas the second sample was processed by 
in situ hybridization with the B. subtilis probe set. After hybridization 
and washing, the probes that remained bound were amplified by PCR 
and processed into Illumina libraries. The output from each method 
was compared. A probe-based library prepared with hybridization and 
wash conditions at 50 °C gave results similar to traditional RNA-seq 
(Fig. 1e; Pearson’s r = 0.73). Repeating in E. coli with its respective probe 
set, we observed a Pearson correlation of 0.77 (Supplementary Fig. 19). 
These values are comparable to the correlation between RNA-seq and 
microarray experiments (r = 0.75–0.80)15,16.

Next, we tested if single-cell transcriptomes can be captured by 
encapsulating individual bacteria using the 10X Chromium Controller. 
E. coli and B. subtilis cells were independently fixed and pretreated with 
probes corresponding to their respective genomes. The prepared bac-
terial samples were subsequently mixed and loaded onto a microfluidic 
chip along with a PCR master mix containing a DNA primer designed 
to amplify the back-end PCR handle built into the probes (Supplemen-
tary Fig. 1, Methods). This custom mix replaced the standard cDNA 
reagents supplied by 10X Genomics as the aqueous phase within the 
droplets. Sequenced libraries from this experiment demonstrate that 
the microfluidic platform can successfully segregate and barcode 
individual microbial cells (Fig. 1f). We observed a corrected multiplet 
rate of 2.8% for 3,373 captured cells, consistent with the expected rate 
of successful single-cell encapsulation based on the specifications of 
the 10X microfluidic system (expected 2.4% multiplet events per 3,000 
recovered cells).

To assess whether the signal from individually encapsulated cells 
provides a representative readout of the transcriptomic state of the 
population, we compared the output produced by capturing probes 
from a bulk sample of cells (≅108 cells) to the signal obtained by sum-
ming the probe counts over thousands of individually tagged cells 
(aggregated UMIs). The abundances across probes between the two 
samples were highly correlated (r = 0.94, Fig. 1g), confirming the signal 
from single cells provides a good representation of transcriptional 
states.

ProBac-seq identifies heterogeneity in B. subtilis
We performed ProBac-seq on B. subtilis grown to late exponential 
phase in M9 minimal media supplemented with malate. In total, 
2,784 cells were captured as determined by unique barcodes at an 
average depth of 1,073 reads per cell. We detected a median of 325 
mRNA transcripts per cell (approximately 10–20% of the total mRNA 
pool4,17) corresponding to a median of 241 genes per cell. UMIs per 
probe ranged from 0 to 45 for any given gene in any given cell. The most 
highly detected probes targeted genes encoding ribosomal proteins 
(rpsG, rpsH, rpsR, rpsM, rpsS, rplL, rplD, rplO, rplV), translation elon-
gation machinery (fusA, tufA, map) and transcriptional machinery  
(rpoA).

from 10X Genomics) and custom single-stranded DNA probe libraries 
to resolve the mRNA profile of thousands of bacterial cells.

Results
Probe design and library generation
To leverage existing microfluidic single-cell sequencing platforms, we 
devised a method whereby individual transcripts are tagged with DNA 
probes. This approach requires generating large oligonucleotide librar-
ies that are complementary to the protein-coding sequences within a 
genome (Supplementary Fig. 1). Large transcriptome-wide oligonucleo-
tide libraries have been extensively used for bulk transcriptomics in 
microarrays and, more recently, to selectively capture mRNA from an 
infection model that includes mammalian and bacterial transcripts8. 
In our design, multiple DNA regions of 50 base pairs (bp) were chosen 
from each open-reading frame based on uniqueness as determined by 
UPS2 software9 or based on published oligonucleotide arrays10,11. These 
sequences then served as the target regions of single-stranded DNA 
probes, which were designed to hybridize to the corresponding mRNA 
by sequence complementarity. Probes also contained a 5′ polymerase 
chain reaction (PCR) handle for library generation, a unique molecular 
identifier (UMI) and a 3′ poly-A tail (A30) for retrofitting prokaryotic 
transcripts to the 10X Genomics Single Cell 3′ system (Fig. 1a). Multi-
ple probes (complementary to different regions) were designed for 
each gene to enhance transcript-capture efficiency and decrease noise 
caused by poor hybridization and/or insufficient amplification of any 
given probe. Complete species libraries contained 29,765 probes for 
Bacillus subtilis, 21,527 probes for Escherichia coli and 11,723 probes 
for Clostridium perfringens and targeted 2,959 (B. subtilis) 4,181 (E. coli) 
and 3,189 (C. perfringens) genes, respectively. Libraries were ordered 
at subfemtomole quantities from Twist Biosciences (a one-time cost 
of US$0.05–0.15 per probe) and amplified by rolling circle amplifica-
tion12 to obtain a sufficient amount (0.25 mg = 10.25 nmol per library 
or approximately 0.35 pmol of each probe) for scRNA-seq experiments 
(Methods, Supplementary Tables 1–3 and Supplementary Figs. 1 and 
2). Probe libraries were completed by addition of randomized 12 bp 
UMI sequences and a poly-A tail and purified. Read coverage across 
completed probe libraries was well approximated by a log normal 
distribution (Supplementary Fig. 1e). The rolling circle amplification 
approach permits re-amplifying probe sets for unlimited subsequent 
experiments without the need to re-order probes, at an upfront cost 
of under US$0.01 per cell (Supplementary Table 4).

Before microfluidic encapsulation, bacteria were fixed in 1% par-
aformaldehyde to preserve transcripts and permeabilized by mild 
lysozyme treatment. Permeabilized bacteria were then incubated 
with the corresponding DNA probe library. Non-hybridized probes 
were removed with repeated washes (Fig. 1, Methods). Next, bacteria 
were run through a 10X Chromium Controller, where DNA probes were 
captured and barcoded in a manner analogous to the barcoding of the 
transcriptome of eukaryotic cells (Fig. 1b–d). The resulting libraries 
were sequenced, preprocessed with custom scripts extracting the 
target sequence, cell barcode and UMI (https://gitlab.com/hormozlab/
bacteria_scrnaseq) and analysed with the standard CellRanger pipeline 
and the Seurat analysis package (Methods)13,14.

Fig. 1 | Microfluidic probe-based scRNA-seq method and validation. a, Cells 
were fixed and permeabilized to allow the penetration of thousands of unique, 
genome-specific oligonucleotide probes. Hybridized probes retrofitted 
transcripts with a poly-A tail and UMI, whereas unhybridized probes were washed 
away. b, Permeabilized cells with hybridized probes were flowed through a 
commercial microfluidic device that encapsulates single cells into droplets 
containing barcoded primers with poly-A capture sequence conjugated to 
a hydrogel microsphere and PCR reagents. c, Final droplets contain one or 
fewer cells and one hydrogel with a unique cell barcode. Barcoded cDNA was 
generated from the mRNA:probe hybridized complex via in-droplet PCR. 
Droplets were then broken and the pooled cDNA amplified further before 

sequencing. Single-cell transcriptomes were resolved, clustered and visualized. 
d, Transcriptome quantification by hybridization of a probe library followed by 
PCR correlates (Pearson’s correlation coefficient, r = 0.73) to traditional, bulk 
RNA-seq method (SMART-seq stranded kit, Takara) involving random priming of 
hexamers followed by reverse transcription (RT) and incorporation of template 
switching oligo. e, Species mixture (‘barnyard’) plot demonstrates that single 
cells of different bacterial species can be resolved by barcode after microfluidic 
encapsulation. f, Aggregated probe-based signal from thousands of single cells is 
well correlated (Pearson’s correlation coefficient, r = 0.94) to the average probe-
based signal obtained from the bulk population (pre-encapsulation). RPKM, 
reads per kilobase of exon per million reads mapped.
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Next, we resolved distinct cellular states by dimensional reduc-
tion of single-cell expression vectors followed by graph-based clus-
tering and analysis of differential gene expression (DGE) using the 
Seurat package and two-sided Wilcoxon rank-sum test with Bon-
ferroni correction13. For B. subtilis in M9 minimal media in late log 
growth, we resolved four major transcriptomic states comprising 

10 cell clusters that capture subtler signatures in gene expression  
(Fig. 2a,b, Supplementary Fig. 3 and Supplementary Table 6). Algorith-
mic grouping of cell-expression profiles was robust to the clustering 
parameters (Methods). As expected for B. subtilis at late log phase in 
minimal media, we observed a subpopulation of cells (clusters 6 and 8)  
with signatures of genetic competence. Cells in these two clusters 
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differentially overexpress the competence master-regulator, comK, 
compared with the rest of the population (log2fold change (FC) = 2.37, 
adjusted P value = 4 × 10−179) and multiple genes within and down-
stream of competence operons (comC, G, E and F operons, coiA, dprA, 
sbB, nucA, nin, clpC and recA). The fraction of competent cells in the 
population was measured by fluorescence microscopy using a fluo-
rescent promoter-reporter of comGE (Methods, Fig. 2c left panel and 
Supplementary Fig. 4a) and determined to be approximately 10.4% 
(interquartile range (IQR) outlier detection; Methods) similar to the 
fraction of the population comprising clusters 6 and 8 (9.3%, Sup-
plementary Table 5). In total, we found that 45 of the 50 comK regulon 
genes that were targeted with probes were differentially overexpressed 
in clusters 6 and 8 (adjusted P values < 0.05; Fig. 2d and Supplemen-
tary Table 6). Our results agree with numerous studies identifying 
the competence regulon in B. subtilis18,19 and the percentage of cells 
displaying natural competence falls within previous observations for 
similar media (3–10%)20,21.

Unexpectedly, for these growth conditions we observed a small 
subpopulation of cells within the sample (cluster 9, 19 cells, 0.7% of the 
population) with a transcriptomic signature indicative of sporulation. 
In these cells, we observed significant upregulation of transcripts 
corresponding to sigma factors associated with sporulation, sigF 
(log2FC = 1.2, adjusted P value = 4 × 10−41) and sigG (log2FC = 2.2, adjusted 
P value = 2 × 10−63), and genes in the ger, cot and spoIVF operons. Gene 
set enrichment analysis (GSEA) on all significantly upregulated genes 
in cluster 9 using ontological classes from the Gene Ontology Consor-
tium22–24 reveals a 4.3-fold enrichment of genes involved in sporulation 
(false discovery rate (FDR) = 1 × 10−16, Fisher’s exact test) and spore 
germination (fold enrichment = 8.1, FDR = 1.7 × 10−3). This finding high-
lights ProBac-seq’s ability to detect rare and unexpected cell states. To 
confirm this subpopulation, we created a promoter-reporter for cotY, a 
spore coat gene expressed in the sporulating mother cell. Fluorescence 
observation identifies the presence of cotY expression and spores 
in a similar percentage of cells as recovered by scRNA-seq (0.5–1%)  
(Fig. 2c middle panel, Supplementary Fig. 4d).

The largest grouping of B. subtilis cells (comprising clusters 1, 
2, 3, 5 and part of 7) accounted for ~45% of the population and was 
characterized primarily by the upregulation of the dhb operon (log2 
FCs > 0.25, adjusted P values < 2 × 10−5). Genes dhbA, dhbB, dhbC, dhbE 
and dhbF encode the five enzymes implicated in the biosynthesis of 
bacillibactin—a catecholic siderophore that is produced and secreted 
in response to intracellular iron deprivation. Relatedly, yusV, which 
encodes an ABC transporter of bacillibactin, was also upregulated in 
these cells. Cells within cluster 5 are distinguished from the rest of the 
subpopulation by expression of genes related to arginine biosynthesis 
via ornithine. In total, 10 of 14 genes associated with the cellular pro-
cess were significantly upregulated in this cluster alone (gene set fold 
enrichment = 19.35, FDR = 3 × 10−8). A fluorescent promoter-reporter 
for argC confirms heterogeneous expression of arginine genes with 
approximately 2.1% of cells in the high-argC expressing tail of the dis-
tribution, compared with 7.2% of cells in this state as determined by 
scRNA-seq (Fig. 2c right panel, Methods, Supplementary Fig. 4b and 
Supplementary Table 5).

Prokaryotes often express genes with related functions as oper-
ons; polycistronic transcripts under the control of a single promoter. 
In many cases, we observed genes of the same operon overexpressed 
within the same cluster of cells, serving as an internal control for our 
RNA capture and clustering methods. To further explore the ability of 
ProBac-seq to resolve operons agnostically, pairwise comparisons of 
gene expression levels across cells were computed using Spearman 
distance as a measure of covariance. Pairwise distances were then 
related by agglomerative hierarchical clustering (average linkage) to 
identify sets of covarying genes. Compared to scrambled controls, 
genes with significant covariance (empirical P value < 3 × 10−5) often 
recapitulated known operons in B. subtilis (Supplementary Fig. 5 and 
Supplementary Table 7), providing strong evidence that probes capture 
true transcriptomic signatures across individual cells.

Taken together, our platform for single-cell sequencing of indi-
vidual bacterium correctly recapitulates the known cellular states of 
B. subtilis at the expected population fractions and identifies previ-
ously unreported cellular states and was able to uncover features of 
the underlying genomic architecture.

Expression heterogeneity in a clonal E. coli population
With a validated method for identifying cellular states in B. subtilis, we 
used ProBac-seq to characterize transcriptional heterogeneity in E. coli 
MG1655 that was grown in M9 minimal media and chemically fixed at 
an optical density OD600 = 0.5 (mid-log phase). We resolved 3,315 cells 
at an average depth of 1,070 reads per cell, detecting a median of 263 
transcripts per cell representing a median of 165 distinct genes. Cells 
were partitioned into nine groups by graph-based clustering of their 
gene expression profiles (Fig. 3a,b, Supplementary Fig. 6 and Sup-
plementary Table 6). As with B. subtilis, we observe that certain clus-
ters can be assigned to specific biological processes by DGE and that 
cluster determination is robust to the choice of clustering parameters 
(Methods). For example, cells in cluster 1 (482 cells, 14.5% of popula-
tion) uniquely upregulate genes implicated in cell motility, including 
those encoding chemotaxis signalling proteins (cheA, cheW, tar; gene 
set fold enrichment > 100, FDR = 3.1 × 10−2) and structural flagella com-
ponents (fliC, flgL, flgG, flgD, flgE, flgC, flgF; gene set enrichment = 86.08, 
FDR = 2.6 × 10−6). This list includes genes regulated by class 1, 2 and 3 
flagella promoters; three distinct regulons that control the sequen-
tial expression of flagella genes including the master-regulator flhDC, 
components of the membrane-associated basal body and chemotaxis 
proteins, respectively25. To confirm the presence of a motile subpopula-
tion of cells, we stained cells grown under the same conditions using 
Remel Flagella Stain and visualized them through phase microscopy 
(Fig. 3d). This revealed that approximately 36% of cells had assembled 
flagella, which was a greater proportion than the 14.5% observed in the 
scRNA-seq cluster 1. A possible explanation for this discrepancy is that 
some flagellated cells may have already exited the transcriptional state, 
but still retained the translated protein product.

Cells within clusters 5, 6 and 7 demonstrate differential usage of 
carbamoyl phosphate within the culture. Clusters 5 and 7 upregulate 
carA and carB (log2FC > 0.87, adjusted P values < 1 × 10−14), which encode 
the subunits of carbamoyl phosphate synthetase, which catalyses the 

Fig. 2 | ProBac-seq analysis reveals distinct transcriptional states in  
B. subtilis. a, Heatmap of marker gene expression (z-score of log-transformed 
values) from 2,784 individual B. subtilis cells organized into 10 clusters. b, UMAP 
two-dimensional representation of the 10 cell clusters reveals four highly distinct 
transcriptomic signatures. c, Top: single-cell expression of key marker genes 
for competence (comGE, clusters 6 and 8), sporulation (spoIIID, cluster 9) and 
arginine synthesis (argC, cluster 5) are highlighted on the UMAP (left to right). 
Cells within the highlighted cluster are boxed by dashed lines. Middle: volcano 
plots of genes expressed in at least 25% of cells in the corresponding clusters, with 
genes from the respective processes highlighted in green. P values correspond to 

two-sided Wilcoxon rank-sum test with Bonferroni correction. Lower: presence 
of each heterogeneous marker in the population as confirmed by fluorescent 
promoter-reporter constructs (PcomGE-YFP, PcotY-YFP and PargC-YFP, respectively). 
Representative images. A phase bright spore can be seen in the cotY-expressing 
cell. Scale bars, 1 µm. Microscope images were collected from at least ten fields 
with three biological replicates per reported strain to quantify phenotypes 
d, Of all comK regulon genes probed, 90% (45 out of 50) were significantly 
differentially upregulated in cell clusters 6 and 8 (Bonferroni-corrected P 
value ≤ 0.05 for each gene). See Supplementary Table 11 for information on comK 
regulon genes probed.
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conversion of bicarbonate to carbamoyl phosphate for de novo biosyn-
thesis of both uridine-5′-monophosphate and arginine. Both clusters, 
arranged adjacently on the uniform manifold approximation and 
projection (UMAP), also upregulate pyrB, pyrC and pyrI, (log2FC > 0.4, 
adjusted P values < 6 × 10−3), three enzymes involved in the first two 

steps of uridine-5′-monophosphate biosynthesis, implying a commit-
ment of the cells towards pyrimidine biosynthesis. Alternatively, cells 
in cluster 6 appear to shuttle carbamoyl phosphate into the arginine 
biosynthesis pathway as implied by the upregulation of argB, argD, argF, 
argG, argI (log2FC > 0.55, adjusted P values < 1 × 10−20). GSEA reinforces 
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this observation, finding a significant enrichment of genes implicated 
in arginine biosynthesis via ornithine in these cells (gene set fold enrich-
ment = 26.77, FDR = 2.02 × 10−3).

Cells in cluster 8 (141 cells, 4.3% of the population) exhibit sig-
nificant upregulation of fimI, fimC and fimA (log2FC > 2.4, adjusted  
P value < 1 × 10−166). The downstream genes of the fim operon encode for 
components of type 1 pili, which are associated with biofilm formation 
and pathogenicity26–28 and are known to be expressed heterogeneously. 
Taken together, our observations in E. coli and B. subtilis suggest that 
extensive phenotypic heterogeneity is a general feature of bacteria, 
with processes such as arginine metabolism often confined to special-
ist cells. Additionally, genes associated with virulence segregate to 
specific cell populations, suggesting that specialized cell types may 
be involved in pathogenicity.

Toxin-expression heterogeneity in C. perfringens
After validating ProBac-seq on model organisms, we sought to examine 
whether we could identify distinct subpopulations in a bona fide patho-
gen. We focused on toxin production in C. perfringens, a Gram-positive, 

spore-forming bacterium that is an important pathogen of humans and 
livestock and exhibits one of the fastest cell division times reported 
in literature (6.3 min)4,29. The virulence factor in type A C. perfrin-
gens responsible for necrotic enteritis disease is a secreted β-barrel 
pore-forming toxin, NetB. In poultry, necrotic enteritis caused by C. 
perfringens Avian type A strain is a major challenge to antibiotic-free 
farming and causes annual worldwide losses of approximately US$6 
billion30.

Single-cell analysis was performed on C. perfringens grown in rich 
brain heart infusion (BHI) media (Methods) to late exponential phase, 
when toxin is expressed. Here, we omitted inclusion of UMIs within 
the C. perfringens probe library, instead relying on the UMIs in the 
10X capture oligos to quantify the number of transcripts in each cell, 
correcting for the overcounting induced by the in-droplet PCR (Sup-
plementary Information and Supplementary Fig. 7). Using a custom 
cell-calling algorithm (Supplementary Information and Supplementary 
Fig. 8), 1,508 cells were resolved with an average of 507 transcripts 
and median of 153 transcripts detected per cell. Dimensional reduc-
tion of gene expression profiles followed by graph-based clustering 
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Fig. 3 | Heterogeneous gene expression in E. coli grown in minimal medium. 
a, Heatmap of marker gene expression (z-score of log-transformed values) 
from 3,315 individual E. coli cells grown aerobically in minimal M9 media 
organized into 10 clusters. b, UMAP two-dimensional representation of the 10 

cell clusters from aerobic M9 culture conditions. c, Flagellar components are 
heterogeneously expressed in aerobic M9 media, a key flagellar gene (flagellin, 
fliC), is preferentially expressed by cells in cluster 1. d, The heterogeneous 
presence of flagella in the population is confirmed by flagellar staining.
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revealed four distinct C. perfringens subpopulations (Fig. 4a). Whereas 
netB was expressed in all clusters, differential overexpression of netB 
defined cluster 0 (Fig. 4, 43% of population, log2FC = 1.12, P = 2.3 × 10−20, 
two-sided t-test). In fact, heterogenous netB expression was observed 
across three independent biological samples taken at different ODs 
around the time of transition from the exponential to stationary phase 
(Supplementary Table 6 and Supplementary Fig. 18).

Metabolites modulate C. perfringens toxin expression
For C. perfringens in BHI, GSEA also revealed a significant enrichment 
of genes involved in quorum sensing (odds ratio = 6.8, P = 8.8 × 10−5, 

Fisher’s exact test) and fatty acid degradation (odds ratio = 33, 
P = 1.17 × 10−5) in cluster 0. The agr-like quorum sensing system in C. 
perfringens is required for induction of necrotic enteritis in poultry31 
whereas production of another exotoxin, pfoA, has been shown to be 
regulated by short-chain fatty acids such as acetate and butyrate32–36.

Genes controlling fatty acid degradation were upregulated in the 
netB-overexpressing cluster whereas cluster 2 differentially expressed 
genes linked to fatty acid biosynthesis (odds ratio = 46.5, P = 4.3 × 10−10, 
Fisher’s exact test). This led us to speculate about whether toxin pro-
duction and the fraction of toxin-producing cells could be regulated 
by specific fatty acid metabolites such as acetate. This short-chain 
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Fig. 4 | netB toxin in C. perfringens is preferentially expressed by a 
subpopulation of cells and can be downregulated by the addition of acetate. 
a, Merged UMAP of C. perfringens grown in parallel to stationary phase in BHI 
with and without acetate (4 mM). Far left: four populations identified after 
graph-based clustering. Middle left: merged UMAP of C. perfringens with shading 
representing normalized netB toxin expression per cell. Middle right: merged 
UMAP in which cells grown without acetate supplementation are highlighted in 
red. Far right: merged UMAP in which cells grown with acetate supplementation 
(4 mM) are highlighted in blue. b, Left: violin plot of normalized netB expression 

in all cells grown with or without acetate. P value < 0.01 by two-sided t-test. Right: 
violin plot of normalized netB expression in cells within cluster 0 grown with or 
without acetate. P value < 0.01 by two-sided t-test. c, Percentage of cells within 
each cluster for each condition (± acetate). d, Left: volcano plot of DGE of cells 
grown with versus without acetate supplementation. Counts normalized using 
DeSeq2 median of ratios method (ref. 45) and compared by two-sided t-test. 
Adjusted P values corrected by the method of Benjamini and Hochberg. Right: 
subset of volcano plot, focusing on genes downregulated by the addition of 
acetate with netB highlighted.
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fatty acid is abundant in the gastrointestinal tract and has been shown 
to inhibit pfoA exotoxin, which is controlled by a pH-dependent 
self-quorum quenching system32–36. Thus, we hypothesized that acetate 
can be used to reduce netB expression in C. perfringens.

To test this hypothesis, we perturbed the C. perfringens extracel-
lular environment by adding sodium acetate to the growth medium and 
repeated our scRNA-seq analysis at the late exponential phase. In total, 
1,575 cells were captured with an average of 676 and a median of 215 
transcripts detected per cell. The two datasets (± acetate) were merged 
and clustered using the same parameters as applied to the original 
(− acetate) dataset. As before, four distinct clusters were resolved with 
cells from each condition dispersed throughout the clusters (Fig. 4a 
and Supplementary Fig. 10). Expression of netB was again concentrated 
within cluster 0 wherein cells treated with acetate expressed signifi-
cantly less toxin compared to those without treatment (log2FC = −0.69, 
P = 1.79 × 10−9, two-sided t-test). This observation held true in the overall 
population as well (log2FC = −0.89, P value = 2.40 × 10−23, two-sided 
t-test). Furthermore, the addition of acetate significantly reduced 
the fraction of cells in the primary toxin-producing state (cluster 0) 
from 43% to 30% (Fig. 4c, P value = 9.2 × 10−14, Fisher’s exact test). This 
reduction in toxin gene expression was consistent with a decrease in 
extracellular netB protein secreted in cultures grown in media contain-
ing acetate (Supplementary Fig. 11).

Taken together, our results with C. perfringens demonstrate that 
netB is differentially expressed by a specialized subpopulation of 
cells, and that providing growth conditions favouring alternative cell 
states can decrease the fraction of virulent cells in a clonal bacterial 
population.

Discussion
To agnostically characterize distinct transcriptional cell states within 
an isogenic microbial population, we developed a cost-effective bacte-
rial scRNA-seq technique, ProBac-seq, which combines microfluidic 
droplet encapsulation of single cells with in situ hybridization of DNA 
probes for high sensitivity and throughput. Using ProBac-seq, we 
identified known cellular states including genetic competence and 
sporulation in B. subtilis and fimbriae production in E. coli. In addi-
tion, we uncovered several previously unknown transcriptional states 
that expressed genes that are part of metabolic pathways (amino-acid 
metabolism, carbon metabolism, siderophores) and physiological 
states (chemotaxis and motility). Strikingly, arginine biosynthesis 
genes appear to be preferentially expressed in distinct cell states in 
all three organisms that we studied.

Recently, two other methods have been proposed for scRNA-seq 
of bacteria: (1) sorting single bacterium into 96-well plates7 or (2) using 
a combinatorial indexing scheme on a pooled population5,6. Although 
these techniques offer advances, they also incur scalability and capture 
efficiency issues. For example, low numbers of detected transcripts 
per cell and strand-displacement activity in random hexamer prim-
ers and reverse transcription complicate accurate quantification in 
combinatorial indexing methods. Additionally, both methods fail to 
discriminate against ribosomal RNAs, comprising more than 90% of 
the transcriptome. Our approach requires upfront probe generation 
and prior knowledge of the genome, but it is fast, cheap and provides 
high-resolution and accurate quantification. It uses commercial equip-
ment that is easily available and ensures sequencing is not wasted on 
ribosomal or other non-mRNA transcripts (Supplementary Table 8).

Several studies have reported that toxins are expressed by a sub-
population of cells among diverse bacterial species, such as Salmo-
nella enterica37, C. difficile38, Staphylococcus aureus39 and others40. 
However, these previous studies did not identify the entire transcrip-
tomic state of toxin-producing cells. Here ProBac-seq enabled us to 
identify netB heterogeneity and gain a transcriptome-wide view of the 
toxin-producing and vegetative subpopulations in C. perfringens. We 
then predicted metabolites that could alter the toxin-producing cells’ 

physiological state, which we confirmed by measuring toxin expres-
sion and cellular states at a single-cell resolution. We anticipate that 
our method will be widely used to understand how external environ-
ments modulate pathogen virulence at the single-cell level in addition 
to bacterial transcriptional states more broadly.

Methods
Strains and growth conditions
B. subtilis str. 168 was used for all single-cell Bacillus experiments. 
M9 was supplemented with glucose and malate together as they 
make up the preferred carbon source for B. subtilis. For experiments 
on suspension cultures in glucose and malate, cells were grown at 
37 °C with vigorous shaking in M9 media supplemented with CaCl2 
(0.1 mM), 0.2% glucose, tryptophan and trace metal mix8. Trace metal 
solution was made as a 100X concentrate using Na-EDTA 5.2 g, FeSO4-
7H2O 2,100.0 mg, H3BO 330.0 mg, MnCl2-4H2O 100.0 mg, CoCl2-
6H2O 190.0 mg, NiCl2- 6H2O 24.0 mg, CuCl2-2H2O 2.0 mg, ZnSO4-7H2O 
144.0 mg, Na2MoO4-2H2O 1,200.0 mg and DI Water, 999.0 ml. The solu-
tion pH was adjusted to 7.0. At an OD of 0.4–0.5 cultures were supple-
mented with 50 mM malate.

B. subtilis  strain PY79 was used for all fluorescent 
promoter-reporter strains. comG reporter strain was previously 
described21. Promoter reporters for cotY and argC were made as pre-
viously described21. Briefly, YFP promoter reporters were cloned into 
the ECE174 backbone plasmid, which uses sacA integration site and 
encodes chloramphenicol resistance (R. Middleton, obtained from 
the Bacillus Genetic Stock Center). Strains were made by genomic 
integration into the genome. Fluorescent reporters were integrated 
into the sacA site and checked by sequencing. The reporter strain detail 
is found in Supplementary Table 5. Reporter strains were grown in the 
same media and growth conditions used in single-cell experiments.

E. coli MG1655 was used in all E. coli single-cell experiments. For 
experiments in minimal media cells were grown overnight in M9 mini-
mal media and incubated at 37 °C with moderate shaking (200 r.p.m.). 
Overnight cultures were diluted and subcultured and a fixed specimen 
was collected at mid exponential phase (OD 0.3–0.5).

C. perfringens strain 25037-CP01 was grown anaerobically at 37 °C 
in BHI media supplemented with 0.05% cysteine-HCl and, when indi-
cated, 4 mM of sodium acetate. Anaerobic conditions were maintained 
using a gas-pack and anaerobic culture boxes. The oxygen indicator on 
all experimental replicates indicated the absence of oxygen contamina-
tion in the chamber.

Probe set design
Probes were designed with an mRNA complementary region approxi-
mately 50 bp in length flanked by a PCR handle (18–23 bp) towards the 
5′ end and a 30 poly(dA) tract on the 3′ end. On the ends of each probe, 
we included a region allowing for circularization and cutting with 
hindIII as outlined by Schmidt et al.12. Probe sequences are included 
in Supplementary Tables 1, 2 and 3.

Probe amplification
Probes were amplified using a rolling circle method similar to the 
one used by Schmidt et al.12 with slight modifications. To amplify our 
probes, we did not use nicking enzymes but instead only used the 
HindIII digestion site in the rolling circle scheme12. Our incubations 
were scaled by a factor of five from the detailed protocol provided 
by Schmidt et al. Otherwise, all other aspects of the protocol were as 
previously detailed. Amplified probes were eluted and purified by 
PAGE electrophoresis using 15% urea gels and ethanol precipitation 
as described in Sambrook et al.41.

UMI and poly-A addition
Amplified ‘proto-probes’ were extended to include a UMI and 3′ 
poly-adenine tail by isothermal extension with a 3′ blocked primer 
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containing the reverse complementary sequences. In total, 100 µl of 
probes and 1 mg blocked extension primer (Supplementary Table 4) 
were mixed with 100 units of klenow fragment and 1x NEB buffer 2 and 
incubated for 30 min at room temperature. The extended oligonu-
cleotide library was selectively purified by PAGE electrophoresis (final 
probe length approximately 142 bp) using 15% urea gels followed by 
ethanol precipitation as described in Sambrook et al.42.

Fixation and in situ hybridization reactions and optimization
Cells from 2 ml of cell culture were fixed using a 30 min incubation 
in 1% paraformaldehyde (final concentration) at room temperature. 
Formaldehyde-fixed samples were washed with 0.02% saline sodium 
citrate (SSC, Invitrogen) by gentle centrifugation (6,000g) for 2.5 min. 
After the wash, cell pellets were resuspended in 1 ml MAAM (4:1 V:V 
dilution of methanol to glacial acetic acid). Samples were kept at −20 °C 
for up to 2 days before further processing. For in situ probe hybridi-
zation, 150 µl of fixed sample was centrifuged and washed once in 
phosphate buffered saline (PBS) to remove methanol and acetic acid. 
After the wash step, cells were incubated in 200 µl PBS with 350 u µl−1 
of lysozyme solution (Epicentre ready-lyse) for 30 min at room tem-
perature. Lysozyme concentration was optimized and other enzyme 
combinations were tested to achieve a protocol with maximal probe 
signal and minimal cell lysis (Supplementary Fig. 12). After 30 min, cells 
were pelleted and washed with 500 µl PBS-tween (PBS with 0.1% Tween 
20). Cells were then resuspended with 100 µl of probe binding buffer 
consisting of 5 × SSC, 30% formamide, 9 mM citric acid (pH 6.0), 0.1% 
Tween 20, 50 ug ml−1 heparin and 10% low molecular weight dextran 
sulfate42. Cell suspensions were placed in a 50 °C shaker-incubator 
and allowed to pre-equilibrate for 1 hour. After 1 hour, 50 µl of probes 
(600 ng µl−1) were added to each cell suspension and samples were left 
to incubate overnight. After the overnight incubation samples were 
washed five times in prewarmed (50 °C) probe-wash solution (5 × SSC, 
30% formamide, 9 mM citric acid pH 6.0, 0.1% Tween 20 and 50 ug ml-1 
heparin). Before encapsulation on the 10X device, cells were washed 
three times in PBS and diluted as suggested in the 10X Chromium 
instruction manual. A flow cytometer was used to evaluate the reten-
tion of cells through a typical proBac-seq probe hybridization and wash 
procedure. Approximately 90% of fixed cells remained in solution at 
the end of the protocol (Supplementary Fig. 13).

Microfluidic encapsulation and droplet generation reaction
Single-cell partitioning, barcoding and cDNA library generation was 
achieved using the 10X Genomics Chromium Controller with the 
Chromium Single Cell 3′ Reagents Kit (v2 chemistry) as described 
by 10X Genomics (https://support.10xgenomics.com/permalink/
user-guide-chromium-single-cell-3-reagent-kits-user-guide-v2-chem-
istry). The protocol was modified to achieve bacterial scRNA-seq. 
For GEM generation (10X microfluidic encapsulation), a master mix 
containing the following reagents (per rxn, not accounting for excess 
volume) was prepared: 33 µl of 4X ddPCR Multiplex Supermix (Bio-
Rad), 4 µl of custom primer (10 µM), 2.4 µl additive A (10X Genomics) 
and 26.8 µl dH2O. All other reagents specified by 10X Genomics were 
omitted. Prepared cell samples were washed three times in PBS and 
diluted to 1,000 cells µl−1 before loading on the microfluidic chip (‘Chip 
A Single Cell’) with a targeted cell recovery of 10,000 cells. Our recov-
ery was lower than the expected cell number and we attribute this to 
the difficulty in obtaining accurate cell number measurements when 
working with small numbers of fixed bacterial cells.

Library construction and sequencing
After microfluidic encapsulation on the Chromium Controller, each 
sample (that is ‘reaction’) was visually inspected to confirm success-
ful GEM formation (should observe a well distributed emulsion with 
a volume of approximately 100 µl). Samples were then transferred to 
fresh PCR tubes and cycled at the following conditions (replacing the 

‘GEM-RT Incubation Step’ in 10X Genomics protocol): 94 °C for 5 min, 
six cycles of 94 °C for 30 s followed by 50 °C for 30 s then 65 °C for 
30 s, held at 4 °C.

After PCR one, the emulsion was broken and the pooled DNA puri-
fied using Dynabeads MyOne Silane as described in 10X Genomics’ 
protocol. Purified DNA was amplified once more (replacing the ‘cDNA 
Amplification step’ of 10X Genomics’ protocol) using a master mix 
composed of 17 µl of purified DNA, 20 µl of Q5 Hot Start 2X MM, 1.5 µl 
of forward primer (10 µM) and 1.5 µl of reverse primer (10 µM). PCR 
conditions included a 30 s incubation at 98 °C followed by 16 cycles 
of 10 s at 98 °C, 20 s at 62 °C and 20 s at 72 °C before a final extension 
at 72 °C for 2 min. After PCR two, amplified DNA was purified using the 
NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel) as per manu-
facturers’ instructions. Purified DNA was run on Agilent TapeStation to 
confirm the presence of a band at 180 bp, indicating successful library 
generation. Libraries were then prepared for sequencing by Illumina 
adaptor addition via low cycle (n = 6) PCR with custom library prepara-
tion finishing primers (Supplementary Table 3).

Sequencing was carried out on an Illumina nextSeq-1000 instru-
ment with 100 cycle reagents. Libraries were spiked with 30% PhiX 
and sequenced for 8 bp in the i7 index direction and 119 bp for ‘Read 
1’. Addition of 30% PhiX improved fastQ quality scores.

RNA-seq of bulk samples
B. subtilis RNA-seq libraries used for comparison of traditional RNA-seq 
versus probe-based transcriptomics were first fixed with 1% paraform-
aldehyde for 30 min in room temperature. After fixation cells were 
pelleted by centrifugation (6,000g) for 5 min and formaldehyde was 
removed. Pellets were washed in PBS buffer. Washed cells were rehy-
drated in 240 µl Qiagen PKD buffer (FFPE miRNEASY kit, Qiagen). 
Cells were lysed by the addition of 10 µl lysosome solution for 10 min 
followed by bead beating using the Bullet Blender Gold and RINO beads 
as recommended for B. subtilis samples by the manufacturer. Lysed 
samples were further processed using the Qiagen FFPE miRNA kit. 
Libraries were prepared from total RNA (without removal of ncRNA) 
using the Takara Smart-Seq Stranded kit as per the manufacturer’s  
instructions.

E. coli RNA-seq libraries used for comparison of traditional 
RNA-seq versus probe-based transcriptomics were first stabilized in 
Qiagen RNAprotect Bacteria reagent (or fixed in paraformaldehyde 
using standard single-cell protocol for half the sample that underwent 
probe-based analysis). RNA extraction from stabilized pellets was car-
ried out using the standard Qiagen RNeasy kit and the recommended 
protocol for E. coli provided in the Qiagen RNAprotect Bacteria Reagent 
Handbook (v.HB-1704-002). Libraries were prepared from total RNA 
(without removal of ncRNA) using the Takara Smart-Seq Stranded kit 
as per the manufacturer’s instructions.

Raw, demultiplexed reads were trimmed to remove adaptor 
regions and aligned to the relevant reference transcriptome or probe 
library using Bowtie2. Alignments were enumerated with feature-
Counts using the appropriate strandedness argument depending on 
the method of library preparation (Smart-seq stranded kit (Takara) or 
proBac-seq (this article)). Count matrices (in the form of reads per gene 
or probe, or reads per gene or probe per cell) were then used to quantify 
gene expression. For RNA libraries prepared by random priming, reads 
were normalized by transcript length and sequencing depth as reads 
per kilobase per million reads.

Microscopy
Cultures were visualized on a Leica DM3000 light microscope before 
single-cell experiments to ensure samples were free of chains and 
clumps. Reporter strains were imaged using a ×100 oil-immersion 
objective on a Zeiss Axio Observer inverted microscope equipped 
with a colibri-7 light emitting diode (LED) fluorescent light source 
and an axiocam digital camera. Flagellar staining was done using the 
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Remel flagellar stain (Thermo Fisher Scientific) as per manufacturer 
instructions.

Image analysis using cell segmentation and outlier 
identification
Cells in microscopy images were segmented using the microbeJ pro-
gram within FIJI (ImageJ). Outliers were identified by using the IQR 
outlier method. Specifically, quartiles and the IQR were determined for 
each dataset. Outliers were determined by standard outlier detection 
parameters: cells that were more than 1.5 IQRs above quartile 3 were 
designated as cells within an overexpressing population. Population 
histograms were plotted and outliers reported.

Western blot analysis
To collect conditioned media from C. perfringens cultures at OD600 
corresponding to late exponential growth (OD600 between 0.7 and 
0.8) were pelleted by centrifugation at 4,200g for 4 min. Supernatant 
was then filtered through a 0.2 µM filter. Then 5 µl filtered conditioned 
media was incubated with NuPage LDS loading buffer (Invitrogen) 
for 10 min at 95 °C. Samples were loaded in equal volume and run on 
a 4–12% Bis Tris polyacrylamide gel. PAGE gels were transferred to an 
invitrolon 45 µM polyvinylidene difluoride membrane that was pre-
soaked in methanol using the Xcell-II blot apparatus (Invitrogen) as 
per the manufacturer’s instructions. Toxin netB (33 Kd) was detected 
using custom polyclonal rabbit antibodies (ProSci, Poway CA) at a 
1:1,000 dilution and the WesternBreeze rabbit chromogenic Western 
Blot kit (Invitrogen). We used the SeeBlue Plus2 prestained ladder 
(Novex, Life Technologies) as a marker of protein size. All experi-
ments were done using at least biological triplicates and technical 
triplicates on numerous independent days and representative images  
were selected.

Transcriptomic analysis and visualization
Single-cell gene expression matrices, cg, were analysed with Seurat 
(v.3.1.2 with default parameters except where indicated). We first 
log-transformed the data using the ′NormalizeData(normalization.
method = ‘LogNormalize’, scale.factor = 10000)′ function, and selected 
the 2000 most variable genes using ′FindVariableFeatures(selection.
method = ‘vst’, nfeatures = 2000)′. Then, we z-scored these 
highly-variable genes using ′ScaleData′. Next, we performed linear 
dimensionality reduction using principal component analysis (PCA) 
down to 50 dimensions (′RunPCA′). Points in this embedding were used 
to construct UMAP plots (′RunUMAP(dims = 1:10)′) and find neighbours 
for clustering (′FindNeighbors′). ′FindClusters(resolution = 1.0)′ was 
used to run the Louvain clustering algorithm and generate clusters. 
We confirmed that the clusters highlighted in the main text appeared 
consistently for a range of resolutions from 0.5 to 1.5. Summary statis-
tics of the number of genes/transcripts in a cell and cluster populations 
for the different samples can be found in Supplementary Table 8. DGE 
was performed using the ′FindMarkers(min.pct = 0.25)′ function with 
a log-fold change cutoff of 0.25, whose output when applied to our 
data is shown in the DGE Supplementary Tables. Heatmaps of dif-
ferentially expressed genes were generated using the ′DoHeatMap′ 
function using the standard Seurat pipeline, which displays the genes 
with highest scores as markers of each given cluster and show only the 
top overexpressed genes in each cluster with Bonferroni-corrected  
P value < 0.05. Other differentially expressed genes found in each clus-
ter can be found in the supplementary DGE tables. For C. perfringens 
data, the above computational pipeline was repeated analogously using 
the Scanpy package43 except for the following three steps: PCA was per-
formed using all genes; DGE was performed with ‘rank_genes_groups’ 
function which uses two-sided t-test; the PAGA algorithm was run with 
the default parameter to obtain a graph for seeding UMAP; and we ran 
UMAP with the minimum distance and spread parameters set to 0.3 
and 5, respectively.

Calculating corrected multiplet rate
A ‘barnyard experiment’ was conducted in which E. coli and B. subtilis 
cells were mixed at a target species ratio of 1:1 and analysed by our bac-
terial single-cell RNA-seq method using the 10X Chromium Controller. 
We recovered 3,373 GEM containing droplets with 45 (1.3%) showing 
evidence of interspecies collisions based on reads sharing the same 
cellular barcode but mapping back to different species probe sets. 
Assuming an exact 50:50 species mix, the true multiplet rate (account-
ing for both inter- and intraspecies collisions) is then estimated as 
2 × 1.3%, or 2.6%; that is, in experiments containing a single bacterial 
species, 2.6% of called ‘cells’ would actually represent cell multiplets. 
We can further correct this estimate based on the observed species 
ratio, following Bloom44. In the same dataset, the number of droplets 
containing at least one E. coli cell (N1) was found to be 2,095 based 
on mapped reads and the number of droplets containing at least one 
B. subtilis cell (N2) was 1,323 for an observed species ratio of ~1.6:1. 
The number of droplets containing at least one cell of each species 
(N1,2) is 45, as before. Therefore, the true corrected multiplet rate can 
be analytically determined as 2.8%. For comparison, 10X Genomics 
reports an expected multiplet rate of 2.4% for 3,000 recovered cells 
based on the anticipated number of droplets generated per lane and 
Poisson loading.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All sequence data used in this publication are publicly available through 
the National Center for Biotechnology Information’s GEO repository 
under accession number GSE223752. The genome for Clostridium 
perfringens has been deposited in the National Center for Biotechnol-
ogy Information under the accession numbers CP109957–CP109962.

Code availability
Code to prepare custom references, reformat FASTQ files for the Cell-
Ranger pipeline, generate single-cell gene expression matrices from 
single-cell probe expression matrices, correct for spurious UMIs in C. 
perfringens data and perform custom cell-calling is available at https://
gitlab.com/hormozlab/bacteria_scrnaseq.
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