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Reconstructing the lineage relationships and dynamic event 
histories of individual cells within their native spatial context is 
a long-standing challenge in biology. Many biological processes 
of interest occur in optically opaque or physically inaccessible 
contexts, necessitating approaches other than direct imaging. Here 
we describe a synthetic system that enables cells to record lineage 
information and event histories in the genome in a format that can 
be subsequently read out of single cells in situ. This system, termed 
memory by engineered mutagenesis with optical in situ readout 
(MEMOIR), is based on a set of barcoded recording elements termed 
scratchpads. The state of a given scratchpad can be irreversibly 
altered by CRISPR/Cas9-based targeted mutagenesis, and later 
read out in single cells through multiplexed single-molecule RNA 
fluorescence hybridization (smFISH). Using MEMOIR as a proof 
of principle, we engineered mouse embryonic stem cells to contain 
multiple scratchpads and other recording components. In these 
cells, scratchpads were altered in a progressive and stochastic 
fashion as the cells proliferated. Analysis of the final states of 
scratchpads in single cells in situ enabled reconstruction of lineage 
information from cell colonies. Combining analysis of endogenous 
gene expression with lineage reconstruction in the same cells further 
allowed inference of the dynamic rates at which embryonic stem 
cells switch between two gene expression states. Finally, using 
simulations, we show how parallel MEMOIR systems operating in 
the same cell could enable recording and readout of dynamic cellular 
event histories. MEMOIR thus provides a versatile platform for 
information recording and in situ, single-cell readout across diverse 
biological systems.

Somatic mutations occur stochastically and independently in  
different cells, and are inherited from one cell generation to the next. 
They can therefore leave a record of lineage relationships, or other 
information, in the genomes of related cells. Pioneering work showed 
that sequencing can be used to identify somatic mutations and thereby 
recover lineage information1–6. However, sequencing has generally 
required disrupting the spatial context of cells, and somatic mutations 
are distributed throughout the genome, hindering their identifica-
tion and analysis. Two recent advances together enable an alternative 
approach. First, CRISPR/Cas9 (refs 7–9) can target mutagenesis to 
specific genomic elements, facilitating the continuous and controlled 
generation of stochastic genetic variation at designated genomic 
regions. Second, in situ single cell analysis by sequential smFISH10,11 
(seqFISH) allows genetic information to be directly interrogated in 
a highly multiplexed fashion in individual cells within native tissue. 
Together, these techniques could in principle permit recording and  
in situ readout of genetic changes at specific loci for lineage 
reconstruction and event recording.

To implement such a system, we devised a bipartite genetic 
recording element termed the ‘barcoded scratchpad’. The state of this 
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Figure 1 | The MEMOIR system for recording and in situ readout of 
cell lineage. a, Barcoded scratchpads provide a general purpose recording 
element whose state can be irreversibly altered by Cas9/gRNA-mediated 
cleavage. b, The MEMOIR recording system consists of three types of 
components, all stably integrated into the genome: (1) a Cas9 variant 
containing an inducible degron (DD) that is stabilized by the small 
molecule Shield1. (2) A Wnt-inducible gRNA targeting the scratchpad, 
co-expressed with a fluorescent protein (mTurquoise). Ribozyme 
sequences (HH, HDV) enable gRNA excision. (3) A set of barcoded 
scratchpads (two-colour elements) integrated throughout the genome. 
Inverted triangles in a and b denote PiggyBac terminal repeats, used for 
genome integration. c, The MEMOIR recording and readout process. 
During recording, scratchpads collapse stochastically as cells proliferate, 
producing distinct scratchpad states in each cell. During readout, 
individual mRNA molecules are detected with a single scratchpad-specific 
probe set (orange, inset), and multiple barcode-specific probe sets  
(blue, green, inset) through sequential rounds of hybridization and 
imaging. Uncollapsed scratchpads produce co-localized barcode and 
scratchpad signals (overlapping dots), while collapsed scratchpads produce 
only a barcode-specific signal (single dots).
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scratchpad can be stochastically altered in live cells and read out in situ in  
single cells by smFISH (Fig. 1a, Extended Data Fig. 1a). The scratchpad 
element consists of 10 repeat units12. gRNA targeting of Cas9 to the 
scratchpad generates double-strand breaks that result in its deletion, 
or ‘collapse’. (Fig. 1a, b). Adjacent to each scratchpad, we incorporated 
a co-transcribed barcode (Supplementary Table 1). The barcode and 
scratchpad components can each be identified using specific sets 
of smFISH probes (Supplementary Table 2), and thus serve as an 
addressable ‘bit’.

Using a pool of such barcoded scratchpads enables lineage 
recording and readout through a two-step process. During cell 
proliferation, Cas9 generates gradual and stochastic accumulation 
of collapsed scratchpads in each cell lineage. Subsequently, cells can 
be fixed and analysed by seqFISH to identify barcodes and assess their 
states based on the presence or absence of a co-localized scratchpad 
signal (Fig. 1c).

To implement the MEMOIR system, we engineered a stable mouse 
embryonic stem (ES) cell line, designated MEM-01, incorporating 
barcoded scratchpads, Cas9, and a scratchpad-targeting gRNA  
(Fig. 1b). First, we used PiggyBac transposition13 to integrate a set of 28 
barcoded scratchpad elements into the genome. We identified a clone 
in which 13 different barcodes were highly expressed (Extended Data  
Fig. 1b–d). Within this line, we stably integrated a Cas9 variant 
containing an inducible degron to allow external modulation of 
Cas9 activity14. Finally, we engineered a scratchpad-targeting gRNA 
expressed from a Wnt-regulated promoter15 (Methods), to enable both 
external control as well as recording of Wnt pathway activity.

Using this cell line, we verified that smFISH could detect scratchpad 
collapse. After 48 h of Cas9 and gRNA induction, we observed a  
substantial loss of scratchpad smFISH signal, but not barcode signal 
(Fig. 2a, b, Extended Data Fig. 2). By contrast, in cells in which 
MEMOIR recording was not induced, co-localization between 
barcode and scratchpad signals was observed in approximately 90% 

of the transcripts, consistent with expected smFISH accuracies16,17  
(Fig. 2b, c). Although individual barcoded scratchpad transcripts 
appeared either collapsed or uncollapsed based on co-localization, 
cells typically exhibited a mixture of collapsed and uncollapsed scratch-
pads with the same barcode owing to the existence of multiple genomic  
integrations undergoing independent collapse events (Extended Data 
Fig. 1b). Together, these results indicate that scratchpad states can be 
altered and that the fraction of collapsed scratchpads for each barcode 
can be subsequently read out in situ.

The fraction of collapsed scratchpads increased progressively 
over time after Cas9 and gRNA induction, as required for MEMOIR 
operation. We observed an approximately 27% decrease in mean  
co-localization fraction after 48 h of Cas9 and gRNA induction (Fig. 2b, c).  
Additionally, the collapse rate correlated with the level of gRNA 
expression, suggesting that collapse rates are tuneable (Extended Data 
Fig. 2d). By contrast, in the absence of induction, scratchpad states 
remained stable (Extended Data Fig. 2e–g). Further, a Cre-activated 
gRNA functioned similarly to the Wnt-activated gRNA (Extended Data 
Fig. 3a–d), and scratchpad collapse also occurred in CHO-K1 cells and 
budding yeast (Extended Data Fig. 3e, f), suggesting that the system 
design can be generalized to other methods of activation and to other 
species. Finally, we verified that seqFISH could enable readout of 13 
distinct barcoded scratchpads in single cells using 7 rounds of hybri
dization (Fig. 2d, e; Methods).

To analyse cell lineage, we activated MEMOIR and allowed cells 
to grow for 3 or 4 generations, while performing time-lapse imaging 
to establish an independent ‘ground truth’ lineage for later validation  
(Fig. 3a). We then fixed the cells and analysed their barcoded scratch-
pads by seqFISH (Fig. 3b). Altogether, we analysed 108 colonies, 
including 836 cells.

Inspection of scratchpad collapse patterns revealed lineage 
information. For example, in one colony, barcode 9 was differentially 
collapsed between two 4-cell clades, consistent with a collapse event 
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Figure 2 | In situ readout of scratchpad state. a, smFISH readout of 
scratchpad state in two cells (white outlines). The scratchpad associated 
with barcode 2 has collapsed in the lower cell, but remains uncollapsed 
in the upper cell. Overlaid images are slightly offset for visual clarity. 
b, Histograms of scratchpad smFISH signal intensities, identified as 
collapsed (blue) or uncollapsed (orange) based on scratchpad–barcode 
co-localization. The fraction of collapsed scratchpads increased after 48 h 
of activation (top versus bottom panel). Far right bars indicate smFISH 
signal exceeding the maximum displayed intensity. c, Scratchpad collapse 
accumulates over time post activation. Box plots show median (red bar), 
first and third quartiles (box) and extrema for four highly expressed 
barcodes; n =​ 1,826, 418, 610, 545 cells, left to right. Activated samples  

in b and c only include gRNA-expressing cells, as measured by  
co-expression of mTurquoise. d, Multiplexed readout of barcoded 
scratchpads (scratchpad, SP; barcode, BC) by sequential rounds of 
hybridization with distinct probe sets (colours) provide information 
about the collapse status of multiple barcoded scratchpads in each cell 
(right). e, Example of seqFISH analysis. Scratchpads (red) and three pairs 
of barcodes (middle images) are shown (pseudocoloured). Solid and 
dashed circles at barcode positions indicate uncollapsed and collapsed 
scratchpads, respectively. Barcode data are superimposed on the 
scratchpad image in the final panel. For clarity, additional hybridizations 
and barcodes are not shown. Scale bars (a, e), 10 μ​m (left images) and 2 μ​m 
(magnified panels).
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occurring after the first cell division (Fig. 3c, left). Similarly, barcode 
2 revealed distinct collapse frequencies between first cousins, but 
similar frequencies between sister cell pairs (Fig. 3c, middle). Barcode 

10 provided additional lineage information, as different sister cell 
pairs showed collapse frequencies that were similar to each other but 
different from their cousins (Fig. 3c, right). These examples, along with 
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Figure 3 | MEMOIR enables lineage reconstruction in ES cell colonies. 
a, Time-lapse videos of colony growth were acquired to provide lineage 
‘ground truth’ (dashed lines) for later validation of reconstructed lineages, 
but not for reconstruction itself. b, At the end of the movie, seqFISH was 
performed, as in Fig. 2. Scale bar, 20 μ​m. c, Examples of how barcoded 
scratchpad collapse patterns reflect cell lineage. d, MEMOIR readout for the 
colony in a–c, showing the number of barcode transcripts detected (bubble 
size) and the uncollapsed fraction (colour scale). e, Data from d were used 
to compute a matrix of cell-to-cell barcode ‘distance’ (dissimilarity) scores. 
f, Reconstructed lineage tree for the same colony (Methods). Percentages 
on the tree represent the frequencies of clade occurrence from a barcode 
resampling bootstrap procedure. In this case, the reconstructed tree 
matches that obtained from the video. g, Cumulative distributions show 
the fraction of all pairwise relationships correctly identified in each colony, 
for all colonies, and for the top 20% (subset 1) or 40% (subset 2) ranked by 
bootstrap score. h, Idealized simulations of three-generation binary trees 
show how reconstruction accuracy (fraction of relationships correctly 
identified, colour) depends on collapse rate and number of scratchpads. 
i, Cumulative distributions from simulations of MEMOIR show how 
empirically measured noise sources affect reconstruction accuracy in 
simulated trees, assuming 13 scratchpads. gRNA and Cas9 expression noise 
adds some reconstruction error (dotted line), which is strongly increased 
by additional noise from scratchpad expression variability, assuming two 
expressed integrations per barcode (dashed line), and increased slightly 
more by addition of smFISH readout noise (solid line).
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Figure 4 | MEMOIR enables inference of gene expression dynamics  
and the recording of cellular events. a–d, Gene expression dynamics 
inference (see Supplementary Information). a, The rates of switching 
between two gene expression states can be inferred by combining 
reconstructed lineage information and endpoint gene expression 
measurements (schematic). Inference works because switching rates 
affect the degree of cell state clustering on endpoints of lineage trees24,25. 
This analysis can be performed for multiple genes (red, green, blue), 
which could exhibit different dynamics, as shown schematically. b, Fits 
to the bimodal distribution of single-cell Esrrb transcript counts enable 
probabilistic assignment of cells to either the low (E−) or high (E+) Esrrb 
expression state. c, Esrrb expression states mapped onto endpoints of 
lineage trees reconstructed by MEMOIR suggest that these states are 
stable for multiple generations. Two example colonies are shown, with 
numbers indicating single endpoint cells. Scale bars, 20 μ​m. d, Frequency 
of occurrence in the same state (E−, top; E+, bottom) of pairs of sisters, 
first cousins, and second cousins from MEMOIR reconstructions of 
the 30 colonies with highest reconstruction confidence scores among 
the 85 colonies in which Esrrb was measured (blue, red) and from the 
actual lineages of the same colonies (grey). Transition rates inferred from 
MEMOIR are shown at right. e–g, Cellular event recording (schematic). 
e, gRNA1 (orange) is constitutively expressed for lineage reconstruction, 
while the orthogonal gRNA2 (purple) and gRNA3 (green) are expressed 
in response to specific signals and target independent scratchpads sets. 
f, Schematic showing recording of possible signalling histories (purple 
and green shading indicate periods when signals 1 and 2, respectively, are 
present. g, Reconstruction of simulated event histories in a six-generation 
tree. The signals recorded along two branches (yellow) are shown (bottom 
panels), including the actual simulated signals (thick lines), examples 
of individual reconstructed signals (dashed lines), and the average 
reconstructed signals (solid lines; mean ±​ s.d., n =​ 500 trees) (Methods).
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others (Extended Data Figs 4 and 5), show how scratchpad collapse 
patterns can provide insight into lineage relationships.

To analyse lineage reconstruction more systematically, we tabulated 
scratchpad collapse frequencies for all probed barcodes in each colony 
(Fig. 3d) and used these data to calculate a cell-to-cell ‘distance’ matrix, 
representing differences in collapse patterns between each pair of 
cells (Fig. 3e; Supplementary Information). We then applied a binary 
hierarchical clustering algorithm adapted from phylogenetic analysis to 
these distance scores in order to reconstruct a lineage tree18,19 (Fig. 3f;  
see Methods). Finally, as validation, we compared each reconstructed 
tree to the actual colony lineage obtained directly from the 
corresponding time-lapse video (Fig. 3a).

Across all 108 colonies, we observed a broad distribution of recon-
struction fidelity (Fig. 3g, all colonies). However, using a bootstrap 
procedure to rank colonies based on the robustness of reconstruction 
to resampling of the underlying data, it was possible to identify colonies 
with more informative scratchpad collapse patterns, and these tended 
to reconstruct with higher accuracy (Extended Data Fig. 6; Methods). 
For example, within the top 20% of colonies ranked by bootstrap,  
72% of lineage relationships were correctly reconstructed (Fig. 3g, 
subset 1 and Extended Data Fig. 6a).

To compare these results to theoretical expectations, we simulated 
idealized MEMOIR operation in three-generation binary trees 
(Methods). As expected, mean reconstruction fidelity increased with 
the number of distinct scratchpads and required relatively few scratch-
pads to reach high fidelity. For example, fidelity was 81 %−29

+19  (mean and 
68% central confidence interval) for 10 scratchpads and 93 %−8

+7  for 20 
scratchpads at the experimentally measured collapse rate of approxi-
mately 0.1 per scratchpad per cell generation (Fig. 3h). With around 
eight scratchpads, the performance of these idealized simulations 
matched that of the bootstrap selected colonies (Fig. 3g, Extended Data 
Fig. 6b, subset 1), consistent with the majority of the 13 barcoded 
scratchpads targeted by seqFISH providing useful information. The 
diversity of states generated corresponds to approximately 28 =​ 256 
scratchpad configurations, comparable to the number of distinguish-
able alleles observed by sequencing-based approaches20.

The current implementation of MEMOIR exhibited limited recon-
struction depth and accuracy. To understand the relevant sources 
of error, we performed more detailed simulations, incorporating 
empirical measurements of noise in both recording (Cas9 and gRNA 
expression) and readout (for example, scratchpad expression and 
smFISH detection) (Extended Data Fig. 7). Notably, stochasticity in 
Cas9 and gRNA expression, as well as smFISH detection, contributed 
relatively minor errors in reconstruction. Rather, for a given number 
of scratchpads, the primary sources of error in reconstruction were 
stochastic fluctuations in scratchpad expression, and ambiguities intro-
duced due to multiple incorporations of the same barcoded scratchpad 
(Fig. 3i, Extended Data Fig. 7; Supplementary Information). On the 
basis of this analysis, future versions of MEMOIR can be improved 
by increasing the number of unique scratchpad variants and reducing 
noise in their expression (see Supplementary Information for further 
discussion of potential improvements). These improvements should 
enable MEMOIR to reconstruct deeper and/or more sparsely sampled 
trees (Extended Data Figs 8 and 9).

Because MEMOIR is compatible with same-cell measurements of 
endogenous gene expression through additional rounds of smFISH, 
it can provide both lineage and endpoint cell state information for the 
same colony. This combination can provide insight into the dynamics 
of switching between gene expression states (Fig. 4a). For example, 
ES cells stochastically transition among states with distinct expression 
levels of the pluripotency regulator Esrrb21,22. To infer the rates of 
these transitions, we measured Esrrb expression, and assigned each 
cell a probability of being in a high or low Esrrb expression state23,24 
(Fig. 4b; Supplementary Information). Using the MEMOIR-inferred 
lineage, we found that sisters or first cousins were significantly more 
likely to appear in the same Esrrb expression state compared with pairs 

of second cousins (P <​ 0.004) (Fig. 4c, d). Using a dynamic inference 
framework24,25, we further inferred the quantitative rates of switching 
between states (Fig. 4d, right panel, and Extended Data Fig. 10; 
Supplementary Information), and verified that they were consistent 
with direct measurements of switching dynamics23. Going forward, 
multiplexed in situ transcriptional profiling of endogenous genes10,11, 
together with MEMOIR, should enable analysis of more complex 
dynamic cell state transition processes.

The design of MEMOIR provides a platform that can record and read 
out histories of dynamic cellular events beyond lineage information 
(Fig. 4e, f). Specifically, orthogonal gRNAs expressed from signal-
specific promoters can in principle record multiple intracellular 
signals onto distinct sets of scratchpads. We simulated binary trees of 
six generations in which different cell lineages experienced distinct 
time courses of two input signals (Fig. 4g). In these simulations, one 
gRNA variant was constitutively expressed solely to enable lineage 
reconstruction using one set of scratchpads. In addition, each of 
the signals activated expression of a corresponding gRNA variant, 
generating collapse events in its own specific set of 50 scratchpads, 
at a rate proportional to the signal magnitude. By analysing endpoint 
scratchpad collapse patterns for all three sets of scratchpads, we were 
able to reconstruct both lineage trees and event histories (Fig. 4e–g;  
Methods). This reconstruction process takes advantage of the recon-
structed lineage tree to map the most likely assignment of collapse 
events from the signal-recording gRNAs to specific positions on  
the lineage tree, with a maximum possible time resolution of one cell 
cycle (since the sequence of collapse events within a cell cycle cannot be 
distinguished). Thus, over timescales of multiple cell cycles, MEMOIR 
should enable analysis of the sequence, duration, and magnitude of 
signals along individual cell lineages (Fig. 4g).

Using genomic DNA as a writable and readable recording medium 
within living cells is a long-standing goal of synthetic biology26–30. 
A key application for this technology is to enable analysis of lineage 
and molecular event histories that unfold in complex and optically  
inaccessible developmental systems over timescales of multiple 
cell generations. MEMOIR provides a proof of principle, showing 
recording and readout of such information with endpoint single-cell 
in situ measurements. Importantly, the capacity of MEMOIR can be 
extended beyond the current demonstration using more scratchpads 
with improved designs and highly multiplexed seqFISH10,11. Thus, we 
anticipate this approach will open up new ways of studying develop-
mental trajectories in developing embryos, tumours, and other systems, 
eventually enabling us to read, within their native spatial contexts, each 
cell’s own individual ‘memoir’.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments outcome assessment.
MEMOIR component construction. The scratchpad transposon was constructed 
from a ten-repeat array (20X PP7 stem loops) derived from plasmid pCR4-
24XPP7SL12 and ligated directionally using BamH1 and BglII sites into a modified 
form of the PiggyBac (PB) vector PB510B (SBI) lacking the 3′​ insulator and 
including a multiple cloning site (MCS). The CMV promoter was then removed 
using NheI and SpeI and replaced by a PGK promoter with Gibson assembly.  
A gBlock (IDT) containing the AvrII and Xhol restriction sites, priming sequences, 
and the BGH polyA was then introduced 3′​ of the PP7 array by Gibson assembly 
using the EagI site in the backbone. Unique barcodes were then inserted into the 
transposon in the region 3′​ of the scratchpad array either by Gibson assembly or 
directed ligation using AvrII and XhoI. A total of 28 unique barcode sequences 
(Supplementary Table 1, GenScript Biotech) derived from Saccharomyces  
cerevisiae were used to generate the barcoded scratchpads. Scratchpad transposons 
were found to produce transcripts with half-lives of approximately 2 h (Extended 
Data Fig. 1e–g).

The Cas9 construct was made using hSpCas9 from pX3307. First, the FKBP 
degron (DD) was PCR-amplified from pBMN FKBP(DD)-YFP14 and introduced 
with Gibson assembly into pX330 restricted with AgeI, 5′​ of the open reading frame 
of hSpCas9, to create pX330-DD-hSpCas9. DD-hSpCas9 was amplified from this 
plasmid by PCR and introduced into another plasmid, 3′​ of a PGK promoter using 
Gibson assembly. After sequence verification, the PGK-DD-hSpCas9 construct was 
excised using restriction enzymes (AvrII and SacII), blunted with T4 polymerase, 
and ligated into a modified form of the PiggyBac vector PB510B (SBI) lacking 
the CMV promoter and including a MCS. A non-transposon version of Cas9 was 
also created using hSpCas9 amplified from pX330 and introduced with Gibson 
assembly at the 3′​ end of a CMV promoter containing two Tet operator sites into 
a standard plasmid backbone.

The Wnt-pathway-responsive gRNA expression transposon was created using 
a LEF-1 response element15. The enhancer and promoter combination exhibited 
low basal activity, large dynamic range, and responsiveness to the GSK3 inhibitor 
CHIR99021 and the Wnt3a ligand. This Wnt sensor was cloned upstream of a 
nuclear localization signal (NLS)-tagged mTurquoise2, which served as a reporter 
of guide expression, that contained an embedded gRNA. The gRNA was flanked 
by self-cleaving ribozymes to excise it from the mRNA31,32, and was purchased 
as a gblock (IDT) and inserted using Gibson assembly between the end of the 
mTurquoise2 coding sequence and a SV40 polyA. This construct was contained 
in a modified form of the PiggyBac vector PB510B.

The Cre-activated gRNA expression transposon was created using the U6 
TATA-lox promoter design33, as illustrated (Extended Data Fig. 3a). The promoter, 
shRNA against mTurquoise2, and gRNA regions were purchased as a gblocks or 
oligos (IDT) and inserted into a modified form of the PiggyBac vector PB510B 
containing PGK-H2B-mTurquoise2.
Cell line engineering and culture conditions. To create MEM-01 we  
co-transfected the E14 mouse embryonic stem cell line (ATCC cat no. CRL-1821) 
with expression plasmids for-hSpCas9 and the Tet repressor and then selected on 
neomycin. A single Cas9-positive clone was then used for co-transfection of 28 
PB transposon barcoded scratchpads and a PB transposon PGK-palmitoylated-
mTurquoise2/ HygroR to facilitate segmentation of cell membranes and selection 
on hygromycin. Subsequent scratchpad-containing clones were inspected for 
overall scratchpad expression by smFISH. Scratchpad clones were also assessed 
for Cas9 expression, which was found to be very low and heterogeneous in most 
clones, with no expression in many cells (for example, 6 ±​ 21 transcripts per cell).  
A scratchpad clone with good scratchpad expression was then simultaneously 
transfected with the DD-hSpCas9 PB transposon (to improve Cas9 expression 
(26 ±​ 17 transcripts per cell)) and the Wnt-activated gRNA expression PB 
transposon. Cells were selected on blasticidin. Single clones were assessed 
for activation potential on the basis of mTurquoise2 expression in response to 
CHIR99021 (Stemgent) or Wnt3a (1324-WN-002 R&D systems), and enhanced 
Cas9 expression was measured by smFISH. Among these clones was MEM-01, 
which demonstrated good gRNA activation in response to Wnt3a and increased 
Cas9 activity in the presence of the stabilizing agent, Shield1 (Clontech) 
(Extended Data Fig. 2c). MEM-01 resembled the parental E14 line in terms of cell 
morphology, cycle times, and expression of pluripotency markers including Esrrb, 
Nanog, and SSEA-1. Stably selected MEMOIR lines containing a Cre-activated 
gRNA were similarly engineered (Extended Data Fig. 3a–d).

The transfections described above were carried out using Fugene HD (Promega) 
at a mass (μ​g) DNA/volume (μ​l) Fugene ratio of 1:3 and following the manu-
facturer’s instructions. For transfection of the PB components a total DNA mass 

of 1 μ​g was used at a ratio of 6:1, PB transposons to PB transposase PB200PA-1 
(SBI). For selection with antibiotics, transfected cells were lifted with Accutase 
(ThermoFisher) after transfection media was removed and plated on 100-mm 
plates (Nunc). 24 h later growth media was replaced with selection media. Single 
colonies were lifted from selection plates as they matured.

During standard cell culturing, ES cells were maintained at 37 °C and 5% 
CO2 in GMEM (Sigma), 15% ES cell qualified fetal bovine serum (FBS) (Gibco/
ThermoFisher), PSG (2 mM l-glutamine, 100 units per ml penicillin, 100 μ​g ml−1  
streptomycin) (ThermoFisher), 1 mM sodium pyruvate (ThermoFisher), 1,000 
units per ml Leukaemia Inhibitory Factor (LIF, Millipore), 1×​ Minimum 
Essential Medium Non-Essential Amino Acids (MEM NEAA, ThermoFisher) 
and 50–100 μ​M β​-mercaptoethanol (Gibco/ThermoFisher). Cells were maintained 
on polystyrene (Falcon) coated with 0.1% gelatin (Sigma).
Quantitative PCR. For detection of genomic barcode copy number, genomic DNA 
was prepared from cells using the DNeasy Blood and Tissue kit (Qiagen). DNA was 
quantified on a NanoDrop 8000 spectrophotometer (ThermoScientific). Reactions 
were assembled as above with around 1,000–5,000 haploid genome copies, based 
on 3 picograms per haploid genome approximation. For gene expression analysis, 
total RNA was prepared using the RNeasy Mini kit (Qiagen). One microgram 
of total RNA was used with the iScript cDNA synthesis kit (BioRad) following 
the manufacturer’s instructions. For qPCR a 1:20 dilution of the cDNA was used 
in each reaction. All reactions were performed with IQ SYBR Green Supermix 
(BioRad). Reaction cycling was carried out on a BioRad CFX96 thermocycler. Both 
genomic DNA and cDNA samples were compared against Sdha copy number or 
expression level, respectively. Analyses included at least three biological replicates 
with each reaction run in triplicate, unless otherwise noted. Primer sets for all 
barcodes and normalizers were obtained from IDT, and the efficiencies of all 
primer pairs were tested.
Time-lapse videos and cell culture for imaging. Tissue culture grade glass bottom 
24-well plates (MatTek) were treated with laminin-511 (20 μ​g ml−1) (Biolamina) 
for 4 h at 37 °C and plated with cells at approximately 2,500 cells per cm2. Cells 
were exposed to Wnt3a (50–100 ng ml−1) and Shield1 (50–100 nM) at the time of 
plating. After approximately 16 h, cells were selected for time-lapse imaging based 
on system activation, assessed by visible mTurquoise2 signal, and then imaged in 
an incubated microscope environment every 14 min over 20–40 h before being 
immediately fixed. Samples were fixed with 4% formaldehyde in PBS for 5 min. 
Samples cultured for smFISH imaging, but without time-lapse video tracking, 
were prepared similarly (typically with a higher plated cell density) and activated 
for different lengths of time, as stated.
Single molecule fluorescence in situ hybridization (smFISH). Hybridization and 
imaging were carried out as previously described23 with the following exceptions: 
scratchpad transcripts were targeted with 40 DNA oligo 20mer probes and barcode 
regions were targeted with 18 20mer probes (Supplementary Table 2). Probes were 
coupled to one of three dyes (Alexa 555, 594 or 647 (ThermoFisher)) and used at 
approximately 130 nM concentration per probe set. Post-hybridization, cells were 
washed in 20% formamide in 2×​ SSC containing DAPI at 30 °C for 30 min, rinsed 
in 2×​ SSC at room temperature, and imaged in 2×​ SSC. For seqFISH, after imaging 
each round of hybridization, 2×​ SSC was replaced with wash buffer for about 5 min 
at room temperature and then replaced with the next probe set in hybridization 
buffer for overnight incubation. Most barcode signals from the previous hybridi-
zation were no longer visible during imaging of the following hybridization (owing 
to photobleaching and probe loss facilitated by the small number of barcode probes 
(18) used per barcode); any remaining visible transcripts were computationally 
subtracted during analysis. Incubation, washing, and imaging proceeded as above 
for up to nine rounds of hybridization.

For analysis of smFISH images, semi-automated cell segmentation and dot 
detection were performed using custom Matlab software. Raw images were 
processed by a Laplacian of the Gaussian filter and then thresholded to select 
dots. Co-localization between dots in the scratchpad image and barcode image 
was detected if both dots were above the threshold and within a few pixels of each 
other. To generate the histogram of intensities for the collapsed and uncollapsed 
scratchpads in Fig. 2b, we integrated the fluorescence intensities in the regions 
of the scratchpad smFISH image that corresponded to individual barcode dots 
or the detected scratchpad dots, respectively. For the collapse rate experiment in 
Fig. 2c and Extended Data Fig. 3c, we measured the aggregate smFISH scratchpad 
co-localization levels for four highly expressed barcodes in cells that had been 
induced for different lengths of time. For activating conditions shown in Fig. 2b, c,  
only data from cells that were actually activated (as assessed by mTurquoise2 
expression) were included.
Lineage reconstruction of experimental data. Cell-to-cell barcode distance scores 
were determined for each pair of cells based on the similarity of the two cells’ 
co-localization fractions for each barcode and weighted by the barcode’s transcript 
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number (as a measure of confidence in the observation). See Supplementary 
Information for details.

Lineage trees were reconstructed from the cell-to-cell barcode distance matrices 
using a modified version of a standard agglomerative hierarchical clustering  
algorithm34. Reconstructions were constrained to binary trees such that cells were 
paired into sisters before first cousin pairs were assigned. Pairing proceeded by 
successively grouping pairs of cells or cell clusters with the minimum barcode 
distance. At each step, if the two most optimal (that is, minimum distance) pairings 
were close in distance, the algorithm optimized for the lowest combined distance of 
the current and next minimum distances. The distance between two clusters was 
computed using the standard UPGMA algorithm19 by averaging the cell-to-cell 
barcode distance between all possible pairs of cells across the two clusters.
Bootstrap to identify robust reconstructions. For each colony, the barcoded 
scratchpad data were resampled by bootstrap and corresponding lineage trees 
were reconstructed (n =​ 1,000 resampled reconstructions per colony). On the basis 
of the frequency at which the original cousin clades occurred in the resampled 
reconstructed trees, a robustness score was assigned to each colony. Colonies 
whose clade reconstructions were less sensitive to resampling showed significantly 
improved overall reconstruction accuracy. Subsets of colonies with more reliable 
reconstructions could thus be selected without prior knowledge of their accuracy 
by selecting colonies with higher robustness scores, for example, scores in the top 
20–40% of the data.

Alternative metrics for identifying colonies with robust lineage information 
were also tested. These metrics similarly enriched for subsets of data with improved 
reconstruction accuracy, further supporting the observation that some colonies 
showed clear lineage information while others did not acquire well-defined collapse 
patterns, probably owing to limited, excessive, or ambiguous collapse events.
Lineage reconstruction simulations. To simulate MEMOIR for three-generation 
binary trees, we started with one cell with a fixed number of idealized scratchpads. 
At each division, the daughter cells inherited the same scratchpad profile as their 
parent and independently collapsed each uncollapsed site with a fixed probability, 
defined as the collapse rate. After three generations, the scratchpad profiles of 
the eight resulting cells were used to reconstruct their lineage tree using either a  
modified neighbour joining algorithm34, or the Camin–Sokal maximum parsimony 
algorithm35 that exhaustively scored all 315 possible tree reconstructions. Both 
forward simulations and the reconstruction algorithms were implemented in 
Matlab. For the heat map and the cumulative distribution functions shown in 
Fig. 3g–i, the fraction of correct relationships was computed as the fraction of 
all distinct pairwise relationships in the actual tree that were correctly identified 
in the reconstructed tree. If multiple reconstructions were equally valid (same 
parsimony score), the fraction of correct relationships was averaged over all of 
them. Reconstruction accuracy was tested over a wide range of collapse rates  
(Fig. 3h) or for the approximate collapse rate observed in our experiments,  
0.1 per site per generation (Fig. 3g,i). The empirical collapse rate, 0.1, was estimated 
from the observed co-localization fraction of the barcodes, ~​0.67, in 108 MEM-01 
colonies induced for approximately 48 h (same colonies as in Fig. 3). In Extended 
Data Fig. 8a, trees of a higher number of generations were reconstructed from 
the final collapse pattern using a modified neighbour joining algorithm34 in 
which allowed reconstructions were restricted to full binary trees. Fraction of 
correct relationships was again computed as the fraction of all distinct pairwise 
relationships in the actual tree that were correctly identified in the reconstructed 
tree averaged over at least 1,000 trees.
Event recording simulations. Simulation of signal recording. To demonstrate event 
recording, we simulated the same forward tree-generation algorithm as in the 
MEMOIR lineage reconstruction simulations (Fig. 3h and Methods), for trees of 
six generations, assuming 50 idealized scratchpads and a collapse rate of 0.1 per 

scratchpad per generation. The simulated cells also contained two additional sets 
of recording scratchpads of 50 sites each (Fig. 4e). We assumed these scratchpads 
collapsed through independent events occurring at rates proportional to the 
magnitude of their respective input signals. The minimum and maximum collapse 
rates at low and high signal were set to 0 and 0.2 per scratchpad per generation, 
respectively. The magnitude of the input signals varied over time and from branch 
to branch as shown in Fig. 4f, g, resulting in different collapse rates for each of the 
two recording scratchpad sets over time and along different lineages.
Reconstruction of simulated signal dynamics. We first reconstructed the lineage 
tree using only the lineage-tracking scratchpad sites. This reconstruction used a 
neighbour-joining algorithm, as in Fig. 3h 34. We then reconstructed the history of 
the collapse events of the recording scratchpads on the reconstructed lineage tree. 
For this procedure, we used a Camin–Sokal maximum parsimony algorithm35. 
In brief, the algorithm proceeds from the leaves of the tree to the root. At each 
generation, it infers the collapse state of the parental node, based on the known 
collapse states of the two daughters, while minimizing the number of new collapse 
events occurring between the parent and the daughters. For binary scratchpads 
this corresponds to computing the intersection between the collapse patterns of 
the two daughters. This procedure is then repeated for the parent and its sister 
until reaching the root. At the end of this procedure, one obtains a maximum 
parsimony assignment of scratchpad states to each node in the tree. On the basis 
of these assignments, we calculated the number of scratchpad collapse events in 
recording scratchpads that occurred along each branch. Finally, this reconstructed 
collapse level provides an estimate of the underlying signal intensity along each 
lineage (for example, actual and reconstructed signals shown for two lineages of 
interest in Fig. 4g).
Data availability. Data that are not included in the paper are available upon 
reasonable request to the authors.
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Extended Data Figure 1 | MEM-01 consistently expresses short-lived 
transcripts from multiple integrated barcoded scratchpads. a, The 
barcoded scratchpad transposon is composed of the following elements 
(left to right): the PiggyBac 5′​ terminal repeat (triangle), the chicken 
HS4 insulator36, a PGK promoter driving expression of the hygromycin 
resistance coding sequence, a 5′​ FRT site, the PP7 scratchpad array 
consisting of 10 repeats, a 3′​ FRT site, a barcode sequence (Supplementary 
Table 1), a priming region for sequencing and PCR, the BGH polyA,  
and the PiggyBac 3′​ terminal repeat (triangle). b, Unique genomic 
integrations for the MEM-01 cell line were detected by qPCR. Bars show 
mean ±​ s.d. of four biological repeats with individual data points marked. 
c, The relative RNA expression levels of barcode integrations were 
quantified by RT–qPCR. Bars show mean ±​ s.d. of three biological  
repeats with individual data points marked. d, Scratchpad expression 
profiles remain constant over 1.3 months of passaging. Low- and  
high-passage cultures of MEM-01 cells (light and dark bars, respectively) 
were assayed for RNA expression levels by RT–qPCR. The unchanged 
expression levels indicate that most barcoded scratchpads express at a 
consistent level and are not routinely silenced over time. Bars show values 
from single biological samples with error bars calculated by combining 
in quadrature the technical replicate variation in barcode and normalizer 

quantitation cycle, Cq, values. e–g, RNA half-lives assessed by RT–qPCR 
analysis of transcript levels after blocking transcription with actinomycin 
D (10 μ​g ml−1). e, Barcoded scratchpad transcripts were assayed with 
two different sets of qPCR primers (left and right panels). These data 
indicate a half-life of approximately 2 h. f, g, Myc and Sdha are known 
to have short and long mRNA half-lives, respectively, and were assessed 
as controls, for comparison37–39. Myc half-life (f) of 1 h was shorter than 
the other measured half-lives, while Sdha (g) was longer lived. For Sdha, 
the measured half-life value (indicated with an asterisk) is expected to 
overestimate the true value, as Sdha levels were determined relative to 
those of the similarly long-lived gene Atp5e, whose transcript levels were 
also decaying over the time course. A previous estimate of Sdha half-life 
in mESCs was 8–13 h (ref. 37). All sample transcript levels were assessed 
relative to those of Atp5e37–39. Transcript abundances were normalized to  
1 at time zero. Decay curves were fit assuming one-phase exponential 
decay using weighted nonlinear least squares regression (e, f) or 
assuming a linear approximation to exponential decay (g). Half-lives 
were determined on the basis of the best fit decay constants and a range 
reported based on the 95% confidence interval (shown in parentheses). 
Data represent two biological replicates with multiple technical replicates; 
error bars show standard deviations.
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Extended Data Figure 2 | See next page for caption.
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Extended Data Figure 2 | Barcoded scratchpads collapse to truncated 
products in activated cells and are stable in full-length and collapsed 
forms. a, Agarose gel electrophoresis of PCR amplified scratchpads 
reveals scratchpad collapse after gRNA induction. Full-length scratchpads 
were amplified from plasmid DNA (lane 1), as well as from cells without 
gRNA constructs (lane 3), or with uninduced gRNAs (lane 4). By 
contrast, cells expressing gRNA showed shorter products (lane 5). Cells 
with no scratchpads are also shown as a negative control (lane 2). Bands 
corresponding to the full-length scratchpad and the collapsed scratchpad 
are indicated (arrows). Note that the laddering effect seen in all lanes 
and gels is due in part to PCR amplification artefacts with the repetitive 
arrays. For gel source data, see Supplementary Fig. 1. b, The lowest 
molecular weight band from scratchpad collapse, as shown in lane 5 in 
a, was extracted and subcloned into a vector. Nine of the colonies were 
sequenced. They aligned to a single repeat unit with 5′​ and 3′​ flanking 
regions, suggesting complete collapse of the repeats owing to Cas9 
activity. Six of the nine sequencing reads resulted in collapse to a perfect 
single repeat (with a possible point mutation in the scratchpad sequence 
associated with barcode 2), and the remaining three sequencing reads 
had additional small deletions in the scratchpad. c, Scratchpad collapse 
requires induction of both Cas9 and gRNA. The gel shows scratchpad 
states for MEM-01 cells treated with no ligand, with Shield1 (to stabilize 
Cas9 protein), with Wnt3a (to induce gRNA expression), and with both 
Wnt3a (100 ng ml−1) and Shield1 (100 nM), all after 48 h. d, Scratchpad 
collapse increased with increasing gRNA activation, as assessed using 

smFISH to detect scratchpad co-localization with four highly expressed 
barcodes. Cells were analysed either without gRNA activation or 48 h after 
gRNA activation by addition of Wnt3a and Shield1 (same concentrations 
as in c). gRNA expression was measured by the intensity of co-expressed 
nuclear mTurquoise signal. Box plots show median (red bar), first and 
third quartiles (box), and extrema of distributions; n =​ 1,826, 1,081, 345, 
191 cells, left to right. Related to Fig. 2c. e–g, Scratchpad states remain 
stable over extended periods. e, Unactivated MEM-01 cells maintained 
uncollapsed scratchpads over timescales of months. f, To check the 
stability of individual barcoded scratchpad variants over time, multiple 
subclones of MEM-01 were isolated after no activation (control; top 
panels) and after a pulse of activation for 24 h (Wnt3a 100 ng ml−1, Shield1 
100 nM; bottom panels). Subclones were assessed for the states of different 
barcoded scratchpad types after initial isolation (0 month relative age, 
left) and after one month of maintenance (right). The apparent collapse 
states (from uncollapsed to fully collapsed) of the barcoded scratchpad 
types were distinct in different subclones and remained stable over a 
month, indicating that scratchpad states are stable over these timescales. 
g, Barcoded scratchpads are also stable over long periods as assessed 
by smFISH readout. The fraction per cell of barcode transcripts (from 
four distinct barcode types) that co-localized with scratchpad signal was 
essentially unchanged between an unactivated low passage cell culture and 
one maintained for over a month. The imperfect co-localization fraction is 
largely the result of errors in smFISH detection and not gradual scratchpad 
collapse. Boxplots as in d; n =​ 1,826, 983 cells, left to right.
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Extended Data Figure 3 | See next page for caption.
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Extended Data Figure 3 | Scratchpad collapse works with an alternative 
gRNA, and in multiple cell types. a–d, A Cre-recombinase-activated 
gRNA is effective at inducing collapse events. a, Schematic of Cre-
activated gRNA system. The construct contains a constitutive PGK 
promoter driving expression of a histone 2B (H2B)–mTurquoise fusion 
protein (the H2B provides nuclear localization). This is followed by a U6 
TATA-lox promoter33 driving expression of an shRNA against mTurquoise, 
followed in turn by a polyT (T6) transcriptional stop, and then a gRNA 
directed against scratchpad regions. Prior to Cre expression, expression of 
the shRNA keeps mTurquoise levels low (brown dashed line) and prevents 
expression of the gRNA. After the introduction of Cre, the shRNA-stop 
cassette is removed, allowing mTurquoise and gRNA expression. Thus, 
mTurquoise provides a visual marker of gRNA expression. This type of 
gRNA architecture could allow MEMOIR activation in specific tissues 
expressing Cre. b, PCR analysis shows that Cre can induce scratchpad 
collapse. Gel shows genomic DNA from a clonal cell line harbouring the 
construct in a. Scratchpads appear uncollapsed in untransfected cells 
(left lane), but show significant collapse after transfection with mRNA 
encoding Cre protein (right lane, approximately 52 h after transfection). 
Note that the laddering effect seen in all lanes and gels is due in part to 
PCR amplification artefacts with the repetitive arrays. c, smFISH  
analysis reveals Cre-activated scratchpad collapse. Quantification of 
barcode–scratchpad co-localization fractions as measured by smFISH.  
Cre transfection reduced scratchpad and barcode co-localization levels 
in cells that showed evidence of Cre activity, as assessed by mTurquoise 
expression (right). Transfected cells that were mTurquoise-negative or  
low and untransfected cells retained high co-localization levels (middle  

and left). Co-localization levels per cell were assessed based on the  
co-localization of four expressed barcodes with scratchpad transcripts. Box 
plots show median (red bar), first and third quartiles (box), and extrema 
of distributions; n =​ 995, 643, 649 cells, left to right. d, Example smFISH 
images of scratchpad and barcode co-localization detected in single cells 
containing the Cre-activated gRNA. Some activated cells (top panels, 
mTurquoise expression ‘on’) show loss of co-localized signal for a specific 
barcode (top panels, lower cell). Unactivated cells, as assessed by low 
mTurquoise expression, typically show no loss of co-localization (bottom 
panels). Scale bars, 10 μ​m. e, f, Scratchpads in CHO-K1 cells and yeast also 
undergo Cas9/gRNA-dependent collapse. e, Cas9- and gRNA-expressing 
plasmids were transiently transfected into Chinese Hamster Ovary  
(CHO-K1) cells containing stably integrated scratchpads. Gel analysis 
reveals Cas9 and gRNA-dependent scratchpad collapse (middle lane), 
while transfection with a Cas9-expressing plasmid alone or control 
plasmids resulted in no collapse (left and right lanes, respectively).  
f, Scratchpad collapse was tested in a yeast strain with doxycycline-
inducible Cas9 and gRNA and integrated scratchpads. Before inducing 
Cas9-gRNA expression (lane 1 and 3), the scratchpads were intact. After 
Cas9-gRNA induction with 2 μ​g ml−1 doxycycline for 11 h, scratchpads 
appeared collapsed (lane 2 and 4). Left two lanes (lanes 1 and 2) and right 
two lanes (lanes 3 and 4) correspond to two biological replicates. Note 
that the scratchpads in CHO-K1 and yeast cells have a similar scratchpad 
PP7 array to that used elsewhere but different flanking sequences, so their 
absolute PCR product lengths differ. For gel source data,  
see Supplementary Fig. 1.
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Extended Data Figure 4 | Examples of lineage reconstruction for ten 
colonies. Data for ten colonies that reconstructed with >​70% of pairwise 
relationships correctly identified are shown here. The bubble chart 
shows the number of barcode transcripts detected (bubble size) and the 
uncollapsed fraction (colour scale). Matrix of cell-to-cell barcode distance 
(dissimilarity) scores were computed from the data. Low (blue) values 
indicate more similar barcoded scratchpad collapse patterns. Note that 
sisters and cousins tend to have lower distance scores than second cousins, 
creating a block diagonal pattern in the distance matrix. Lineage trees 

were reconstructed based on the distance matrix using an agglomerative 
hierarchical clustering algorithm (see Methods). Cluster distances 
from the reconstruction algorithm are shown as branch heights in the 
reconstructed linkage trees. Percentages on the linkage trees represent 
frequencies of clade occurrence from a barcode resampling bootstrap. 
The percentage of correct relationships identified by the depicted lineage 
reconstruction is shown as a percentage and the actual tree is reported as 
[(x y)(x y)][(x y)(x y)], where sister pairs are denoted as (x y) and cousins 
are grouped in brackets ([...]).
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Extended Data Figure 5 | Analysis of reconstruction failure modes. 
These ten colonies showed reconstruction accuracies similar to those 
of random data. Bubble charts, distance matrices and linkage trees are 
shown as in Extended Data Fig. 4. Note the relative lack of block diagonal 
structures in the distance matrices, which typically reflect evidence of 
close sister or cousin relationships and less similar second cousins in better 
reconstructed colonies. Poor reconstructions result from insufficiently 
informative or inconsistent collapse patterns. These can occur in several 
ways. First, colonies may have too many collapsed scratchpads  
(for example, row 2, column 2), leading to degeneracy, and eliminating 
differences between clades. Second, and more often, colonies have too 
few collapsed scratchpads (for example, row 3, column 2) to reconstruct 
the full tree accurately. Third, colonies can provide inconsistent or 
incomplete lineage information such that the data do not point to one 
consistent lineage hypothesis (for example, row 5, column 1). Inconsistent 
information can arise from convergent collapse events in which the same 
scratchpad randomly collapses in separate branches of the lineage—such 
noise is inherent to this method of lineage tracking but can be significantly 

reduced by increasing the number of barcoded scratchpads. Additionally, 
variability in scratchpad expression, resulting from stochastic expression 
of individual barcoded scratchpads as well as apparent inconsistencies due 
to expression of multiple incorporations of the same barcoded scratchpad 
can generate conflicting information. Despite these issues, colonies can 
in many cases provide information about some lineage relationships. For 
example, for the colony in row 5, column 1, all the sister pairs are correctly 
identified, but they are not definitively placed in the lineage tree owing 
to conflicting readouts at the cousin level (for example, collapse events 
in barcodes 9 and 14). Similarly, for the colony in row 5, column 2, cells 
3 and 4 are readily identified as sisters because of a common collapse 
event in barcode 9. But, there is little additional information, such as a 
collapse event from the two-cell-stage, which would allow the cousins 
to be correctly identified. These and other sources of noise impacting 
colony reconstruction are analysed in more detail in Extended Data 
Fig. 7 and Supplementary Information, and can be addressed in future 
implementations of MEMOIR.
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Extended Data Figure 6 | Bootstrap reconstruction score enriches  
for colonies that exhibit more accurate lineage reconstruction.  
a, A bootstrap procedure (Methods) was used to determine the robustness 
of clade reconstruction to resampling of barcode data for each colony. 
The frequency of lineage reconstruction at the first cousin clade level was 
then used to rank all 108 colonies. Colonies with higher reconstruction 
robustness were enriched for more accurate lineage reconstructions, 
although no information about accuracy was used to identify these 
colonies. The top 20% of colonies based on bootstrap score were termed 
subset 1 (left of blue line; n =​ 22). This group correctly identified an 
average of 72% of relationships. The top 40% of colonies were termed 
subset 2 (left of green line; n =​ 43) and correctly identified 67% of 
relationships. Grey region indicates the range of correct relationships 
expected from random guessing of trees (mean ±​ s.d. indicated by line 

and shading). The bootstrap metric effectively filters out colonies that 
have insufficient or inconsistent scratchpad collapse information and 
thus do not robustly generate the same reconstruction. Noise sources that 
affect the data include convergent scratchpad collapse, imperfect collapse 
rates that may not result in collapse events every generation, and variable 
scratchpad expression that limits readout signal or introduces ambiguities 
due to expression from multiple incorporations of the same barcode type 
(see Extended Data Fig. 7 and Supplementary Information). b, Cumulative 
distributions show the fraction of pairwise sister, first cousin, and second 
cousin relationships correctly identified in each colony. Reconstruction 
accuracies of all these types of lineage relationships are similar to 
predictions based on the simulated model with eight scratchpads (no noise 
included). This shows that reconstruction is accurate across all levels of 
relationships. Related to Fig. 3g.
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Extended Data Figure 7 | Comprehensive error analysis identifies 
scratchpad expression variability as the key source of noise in MEMOIR 
experiments. a, Overall reconstruction errors result from three types of 
noise: the inherent stochastic nature of recording lineage information with 
stochastic scratchpad collapse events, recording noise (due to fluctuations 
in the expression levels of Cas9 and gRNA), and readout noise (due to 
fluctuations in the expression levels of the barcoded scratchpads, variable 
expression from multiple integrations of the same barcoded scratchpad 
species (BC), and the fidelity of smFISH imaging readout). b, Cell–
cell variability can be decomposed into intra-colony and inter-colony 
components, as shown schematically. For each hypothetical colony, the 
relative amounts of each type of variability are plotted (also schematic).  
c, Plots show experimentally measured intra- and inter-colony noise 
from gRNA activity (from the fluorescent signal of the Wnt reporter, left), 
Cas9 expression (from the transcript counts by smFISH, middle), and 
scratchpad expression (from transcript counts by smFISH, right).  
These plots represent data from individual cells of all 108  
MEM-01 colonies (see Supplementary Information for details).  
d, Recording noise results in a small decrease in reconstruction accuracy. 

The plot on the left shows the cumulative distribution of reconstruction 
accuracies of 500 simulated colonies comprised of trees of three 
generations, with an average scratchpad collapse rate of 0.1, and 13 
scratchpads. The heat map on the right shows the average reconstruction 
accuracy for 500 simulated colonies for a range of average collapse rates 
and number of scratchpads. e, Fluctuations in scratchpad (SP) expression 
levels substantially reduce reconstruction accuracy. Simulation results 
are plotted as in d, but with the addition of readout noise, rather than 
recording noise, to the idealized simulations. The readout noise is added 
as two separate components: scratchpad expression level fluctuations, 
which significantly increase error, and noise due to smFISH imaging 
fidelity, which contributes minimally to reconstruction error. The curves 
are for two integration sites per barcode. f, Cumulative distribution 
of reconstruction accuracy of 500 simulated colonies with all three 
components of noise included for different numbers of integration sites 
per barcode. The thick blue line is the experimental distribution obtained 
from the 108 MEM-01 colonies. The simulated distribution is consistent 
with the experimentally observed distribution, especially for two effective 
integrations per barcode. No fitting parameters were used.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Letter RESEARCH

Extended Data Figure 8 | Performance analysis on deeper trees and 
trees with missing cells. a, Simulations of reconstruction accuracy of 
full binary trees for varying numbers of unique barcoded scratchpads, 
varying collapse rates, and varying numbers of generations (N). The 
colour of the heat maps corresponds to the fraction of all pairwise lineage 
relationships correctly identified in the reconstructed tree, averaged over 
many simulated trees (Fig. 3h in the main text, also see Methods). Even at 
greater depth (for example, N =​ 10), trees can be reconstructed accurately 
with approximately 50 scratchpads. b, The collapse rate that maximizes 
reconstruction accuracy depends on the number of generations to be 
tracked, but is only weakly dependent on the number of scratchpads. 
This is because maximal lineage information is recorded when each 
scratchpad has a probability of 0.5 of having collapsed by the final time 
point, regardless of the total number of scratchpads. The plot shows the 
optimal collapse rate as a function of tree depth, as determined from the 
simulations (dots) as well as the theoretical expectation of a cumulative 
collapse probability of 0.5 per scratchpad (dashed line). The theory 
curve contains no fitting parameters. c, Simulations of reconstruction 
accuracy for binary trees of three generations as a function of the number 

of scratchpads and the scratchpad collapse rate for trees with one (left), 
two (middle), or three (right) randomly chosen endpoint cells missing. 
Compare with reconstruction accuracy for trees with no missing cells in 
Fig. 3h. The schematic above each panel shows the topology and branch 
lengths of trees with the given number of missing cells. A modified 
neighbour joining algorithm34 was used to exhaustively score all 315 
possible reconstructions. To distinguish between reconstructions where 
tree topology is the same but the branch lengths are different (two such 
trees are shown bracketed in the schematic of the middle panel), we 
modified the reconstruction algorithm to estimate the branch lengths 
connecting a pair of cells based on the hamming distance of their 
barcoded scratchpad collapse patterns (see Supplementary Information). 
For example, two cells whose collapse patterns differ substantially would 
be estimated to have a longer lineage distance between them than would 
cells with more similar patterns. In general, trees with missing leaves can 
be reconstructed with accuracy similar to full binary tree (Fig. 3h). As the 
number of missing cells increases, the reconstruction accuracy decreases 
because there are fewer cells in the tree to provide lineage information.
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Extended Data Figure 9 | Simulations show that MEMOIR can 
operate at low collapse rates to reconstruct sparse trees. We simulated 
MEMOIR in the sparse recording regime, in which collapse events for 
any given lineage occur, on average, once every few generations. Trees 
were generated using simulations and reconstructed using a maximum 
parsimony approach (see Supplementary Information). Experimentally, 
sparse tree regimes in which collapse events occur infrequently could be 
achieved with low Cas9 and/or gRNA expression levels or rare expression 
events (for example, by using weak promoters, occasionally-activated 
promoters, protein degradation domains), or with decreased Cas9-
mediated affinity for target scratchpads (for example, by decreasing the 
complementarity between the gRNA and target). a, Cartoon of sparse 
collapse events on a full binary tree. Each collapse changes the state of each 
scratchpad (arrays of red or black boxes, shown only at nodes where new 
collapse events occur). At the final generation, there are five populations 
of cells with distinct collapse patterns, each shown in a different colour. 
In the sparse representation of the tree (right) each collapse event 
corresponds to a new branch, and the five leaves correspond to the five 
subpopulations of cells with distinct collapse patterns. b, Possible source 
of reconstruction errors. Unrelated clades can converge independently to 
the same collapse pattern and thus become indistinguishable, resulting 
in reconstruction errors (tree on the left), but the probability of such 
coincidences decreases with increasing number of scratchpads (all clades 

are distinguishable for the tree on the right). c, A simulated sparse tree 
with 30 leaves and an average depth of 2.4 ±​ 1.3. The depth of the tree is 
defined as the cumulative number of collapse events experienced by each 
leaf averaged over all the leaves of the tree. The statistics of this tree shape 
is approximately equivalent to a sparse tree generated by a collapse rate of 
0.33 per cell per generation on a full tree of six generations. The heat map 
shows the status of the scratchpad sites for all the leaves. Each column 
corresponds to a particular barcoded scratchpad, and each row to a leaf.  
d, Same as in c, but for a simulated sparse tree with 100 leaves and a depth 
of 3.1 ±​ 1.6; approximately equivalent to a collapse rate of 0.275 per cell per 
generation on a full tree of eight generations. e, The fraction of correctly 
identified tree partitions (defined using the Robinson–Foulds metric40) is 
shown as a function of the number of scratchpads, and normalized by its 
value in the limit of an infinite number of distinct scratchpads (where a 
unique collapse pattern is generated for every collapse event). Sparse trees 
of three different sizes (that is, different numbers of leaves and depth) were 
generated. Each dot corresponds to one simulated tree. Tree size was held 
constant as the number of scratchpads was increased, requiring a fixed 
collapse rate per cell but a collapse rate per scratchpad that scaled inversely 
with scratchpad number. Trees with fewer leaves and lower depth required 
fewer scratchpads for accurate reconstruction. But, even larger trees could 
recover close to the maximal lineage information using only a modest 
number of scratchpads.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LetterRESEARCH

0 100 200 300
Number of Esrrb transcripts

0

20

40

60
C

ou
nt

s

0 hrs

0 100 200 300
Number of Esrrb transcripts

0

20

40

60

C
ou

nt
s

24 hrs

0 100 200 300
Number of Esrrb transcripts

0

20

40

60

C
ou

nt
s

48 hrs

a

0 100 200 300
Number of Esrrb transcripts

0

20

40

60

C
ou

nt
s

0 hrs

0 100 200 300
Number of Esrrb transcripts

0
20
40
60
80

C
ou

nt
s

24 hrs

0 100 200 300
Number of Esrrb transcripts

0
20
40
60

C
ou

nt
s

48 hrs

N=349

N=300

N=345

KS test p=0.11

KS test p=0.17

N=377

N=391

N=314

KS test p=5e-05

KS test p=6e-06

b
+Wnt +Wnt -LIF

0 100 200 300
Number of Esrrb transcripts

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

fra
ct

io
n 

of
 c

el
ls

C
um

ul
at

iv
e 

fra
ct

io
n 

of
 c

el
ls

0 hrs
24 hrs
48 hrs

0 100 200 300
Number of Esrrb transcripts

0

0.2

0.4

0.6

0.8

1

0 hrs
24 hrs
48 hrs

Extended Data Figure 10 | The Esrrb expression level distribution 
is stationary. a, Distribution of the number of Esrrb transcripts in 
individual cells in populations of MEM-01 ES cells activated by the 
addition of Wnt3a and Shield1 (same conditions as the colonies analysed 
in Figs. 3 and 4) for different amounts of time (0, 24, and 48 h from top 
to bottom). The distribution of Esrrb transcript counts does not change 
significantly over 48 h of Wnt3a exposure as quantified by the P value of 
the Kolmogorov–Smirnov (KS) test. The Kolmogorov–Smirnov test was 
performed for the observed distributions at 24 and 48 h with respect to 

the reference distribution at 0 h. The cumulative distribution functions 
(bottom) similarly show that the fraction of cells in the low (or high) 
Esrrb expression state does not change significantly over 48 h of Wnt3a 
activation. A stationary Esrrb distribution implies that transitions between 
the low and high Esrrb expression states must be reversible. b, LIF removal 
changes the Esrrb distribution. Same as in panel a but with LIF removed 
from the media at t =​ 0. The distributions show a significant change during 
the 48 h period, with the fraction of cells in the low Esrrb expression state 
increasing over time, as expected41,42.
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