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SUMMARY

As they proliferate, living cells undergo transitions
between specific molecularly and developmentally
distinct states. Despite the functional centrality of
these transitions in multicellular organisms, it has
remained challenging to determine which transi-
tions occur and at what rates without perturbations
and cell engineering. Here, we introduce kin cor-
relation analysis (KCA) and show that quantitative
cell-state transition dynamics can be inferred,
without direct observation, from the clustering of
cell states on pedigrees (lineage trees). Combining
KCA with pedigrees obtained from time-lapse imag-
ing and endpoint single-molecule RNA-fluorescence
in situ hybridization (RNA-FISH) measurements of
gene expression, we determined the cell-state tran-
sition network of mouse embryonic stem (ES) cells.
This analysis revealed that mouse ES cells exhibit
stochastic and reversible transitions along a linear
chain of states ranging from 2C-like to epiblast-
like. Our approach is broadly applicable and may
be applied to systems with irreversible transitions
and non-stationary dynamics, such as in cancer
and development.

INTRODUCTION

In many multicellular contexts, cells switch among molecularly

and phenotypically distinct states as they proliferate through

repeated divisions (Figure 1A). Key biological functions often

depend critically on the dynamics of these cell-state transitions:

on which transitions are forbidden or permitted, at what rates

they occur, and whether they are stochastic or deterministic.

For example, regulation of fat tissue depends on adipocyte dif-

ferentiation and de-differentiation rates (Ahrends et al., 2014;

Poloni et al., 2012); maintenance of intestinal crypts and the

epidermis are governed by the relative rates of symmetric and
Cell
asymmetric stem cell divisions (Simons and Clevers, 2011);

development of the full repertoire of immune cell types is regu-

lated by stochastic cell-state transitions (Suda et al., 1983,

1984a, 1984b); and lineage commitment in embryonic develop-

ment and later in trans- or de-differentiation depend critically on

dynamic transitions (Dietrich and Hiiragi, 2007; Ohnishi et al.,

2014; Slack and Tosh, 2001; Talchai et al., 2012; Tata et al.,

2013; Yamanaka et al., 2010). Cell-state transition dynamics

are also important in disease, as their dysregulation can lead

to type 2 diabetes (Talchai et al., 2012) and obesity (Ahrends

et al., 2014; Ristow et al., 1998). Similarly, in cancer, the rates

of transition between distinct cell states within a tumor impinges

on the effectiveness of treatments (Gupta et al., 2011; Leder

et al., 2014) and the likelihood of metastasis (Wagenblast et al.,

2015).

The notion of cell state can vary significantly depending on

the particular biological system and the context of the study.

Here, we consider cell states that satisfy certain criteria: first, a

cell state must be heritable, such that after a cell division, the

daughter cells, by default, remain in the same state as the parent

cell unless a transition has occurred. This criterion excludes

transient gene expression fluctuations. Second, different states

should exhibit significant differences in the expression of multi-

ple genes. Thus, although a single marker gene can be used to

identify a particular cell state, the changes in the expression level

of the marker gene must be correlated with that of other genes.

Third, cell states should ideally possess distinguishing pheno-

typic properties such as morphological features (Thiery et al.,

2009), chromatin structure (Kagey et al., 2010), developmental

potential (Wu and Izpisua Belmonte, 2015), or functional attri-

butes (Duffy et al., 2012; Lu et al., 2015), although these may

not always be readily apparent.

Mouse embryonic stem (ES) cells provide an important model

system in which to study cell-state transition dynamics. Multiple

molecularly and phenotypically distinct ES cell states co-exist

and stochastically interconvert in standard culture conditions

(containing serum and leukemia inhibitory factor [LIF]). In pre-

vious studies, these states were shown to be heritable and

differ in gene expression, developmental potential, global epige-

netic profiles, and other characteristics (Canham et al., 2010;

Chambers et al., 2007; Falco et al., 2007; Hayashi et al., 2008;
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Figure 1. Cell-State Transition Networks and the Experimental Platform for Inferring Transition Rates

(A) Trajectory of a proliferating colony of cells in gene expression space (schematic). At each time point, a cell can independently and stochastically change its cell

state (color) and corresponding gene expression profile. Following a division, both daughter cells inherit the state of the parent but then follow independent

stochastic dynamic trajectories.

(B) (i) Dynamics can be determined by directly observing state transitions in a single cell over time, neglecting cell proliferation. (ii) Proliferating colonies provide an

indirect record of the history of cell-state transitions. Here, the cell of interest (top row) is in the blue state but is related to a sister and cousins that are in the green

state, indicating a likely green-to-blue transition in its recent past.

(C) Different dynamics give rise to different degrees of clustering on a pedigree (schematic). Frequent or infrequent switching between red and blue states leads to

weak or strong clustering of cell states, respectively. The distribution of states is independent of the switching rates in this simple example (bar plots).

(D) Cell-state transition networks can be classified based on whether the population fraction of each state is constant (stationary) or changing over time (non-

stationary). A subset of stationary networks also exhibit reversible dynamics.

(E) Experimental approach. (i) Live cells are tracked as they grow and divide using time-lapse microscopy. (ii) After the movie, the cells are fixed and stained for

smFISH. (iii) Individual molecules of mRNA are detected and counted in each cell. (iv) The pedigree reconstructed from (i) is combined with the smFISH mea-

surements, and each cell is assigned an expression state. (v) Using KCA, cell-state transition dynamics are inferred across many of these state-associated

pedigrees (see Box 1).
Macfarlan et al., 2012; Niwa et al., 2009; Singer et al., 2014;

Singh et al., 2007; Yamaji et al., 2013; Yamanaka et al.,

2010; Zalzman et al., 2010). Understanding the transitions

among these cell states is important for applications seeking

to control differentiation of these or other pluripotent cells

for regenerative medicine. Recent improvements in single-

cell profiling have enabled genome-wide analysis of ES cell

states (Klein et al., 2015; Kumar et al., 2014). However,

because these techniques do not track individual cells over
420 Cell Systems 3, 419–433, November 23, 2016
time, they cannot provide information on transition dynamics.

Other elegant studies have estimated transition dynamics of

ES cells using either direct time-lapse microscopy, sorting

of subpopulations, or by characterizing in static images the

intra- and inter-colony gene expression heterogeneity (Canham

et al., 2010; Chambers et al., 2007; Furusawa et al., 2004; Kal-

mar et al., 2009; Kumar et al., 2014; Rugg-Gunn et al., 2012;

Singh et al., 2007; Suda et al., 1983; Toyooka et al., 2008;

Zalzman et al., 2010).



Here, we describe a new approach to infer quantitative cell-

state transition dynamics in which cells transition stochastically

and independently from one heritable gene expression state to

another. This approach does not require sorting, perturbations,

or fluorescent reporters of gene expression. Rather than attempt

to follow transitions directly in each individual cell over time (e.g.,

from the green to blue states in Figure 1Bi), we instead take

advantage of cell division to infer dynamic information indirectly.

Because sister cells start out in the same state, they generally

provide independent realizations of transition dynamics starting

from the same initial condition. Knowing the states of a cell’s

sisters, cousins, and other relatives provides information about

the likely history of that cell’s past transitions, as illustrated

schematically in Figure 1Bii. Under some conditions, combining

the lineage relationships, or pedigree, for a set of individual cells

with their endpoint states, can enable inference of cell-state

transition rates (Figure 1C). This approach is informative as

long as cell states typically persist for durations longer than a

cell cycle, but cannot access dynamics within a single cell cycle.

This basic idea was recently described in Hormoz et al. (2015) for

a special case, but is generalized and applied to embryonic stem

cells here.

Using this approach to measure transition rates among multi-

ple states can provide information about a cell’s overall state

transition network, defined as the set of transitions between

cell states that can occur in a given context. In principle, many

different kinds of transition networks are possible, including all-

to-all, chain-like, cyclical, or tree-like (Figure 1D). Some of these

can produce stationary dynamics that maintain a constant distri-

bution of states over time (Figure 1D, i–iii), and a further subset

of these exhibit reversible transitions (Figure 1D, i and ii) (see

Box 1 for definitions). Other networks, including binary fate trees,

may include irreversible transitions (Figure 1D, iii–iv). Moreover,

for any given network topology, the quantitative rates of each

transition control the dynamic behavior of cells. These examples

are idealized and natural systems can be more complex. For

example, transition rates could depend on position in the tissue

(e.g., through morphogen gradients) or on time. But for the em-

bryonic stem cell system considered here, we show that this

approach is sufficient to identify the cell-state transition network

and quantify its rates in a non-perturbative fashion.

Here, we describe an experimental platform that combines

time-lapse movies to determine lineage relationships with sin-

gle-molecule RNA-fluorescence in situ hybridization (RNA-FISH)

of multiple genes to determine endpoint gene expression states

(Figure 1E). For other elegant examples of combining time-

lapse imaging with endpoint readout see Filipczyk et al. (2015),

Lee et al. (2014), and Purvis et al. (2012). Using this approach,

we discovered that ES cells exhibit a distinct cell-state transition

network based on reversible stochastic transitions along a

linear chain of states. We also generalize the previous theoretical

framework to enable analysis of networks containing irreversible

andnon-stationary dynamics. Finally, because this is an inference

approach, we provide a set of self-consistency checks to

evaluate whether the assumptions of the underlying model

are indeed valid. Thus, we believe the combined theoretical-

experimental approach developed here should be applicable to

other biological systems in which cells transition among multiple

states.
RESULTS

Cell-State Transition Networks Can Be Inferred from
Clustering of States on Pedigrees
To motivate the inference method, we first consider a simple

minimal transition network (Figure 1C). In this example, cells sto-

chastically transition between the two states at equal rates as

they proliferate, such that the average population fraction of

each state does not change over time. When transition rates

per cell cycle are high, the states of sister cells rapidly become

uncorrelated with one another, leading to no apparent clustering

of states on the pedigree. By contrast, when transition rates per

cell cycle are low and cells remain in the same state for multiple

generations, closely related cells are more likely to be observed

in the same state. As a result, different transition rates produce

different degrees of clustering on the pedigree. Conversely,

measurements of clustering between states of related cells can

be used to infer transition rates. More specifically, clustering of

cell states can be quantified bymeasuring how frequently related

cells are observed to be in a given set of states, as a function of

how long ago they shared a common ancestor. These correla-

tions, computed between all pairs or, more generally, all triplets

of cells overmany pedigrees, enable quantitative inference of the

transition dynamics through an approach we term kin correlation

analysis (KCA), which is described briefly in Box 1 and in more

detail in the STAR Methods. As derived in Box 1, dynamics of

reversible transition networks can be inferred from the observed

correlations between pairs of related cells (two-cell correlations),

whereas inference of networks with irreversible transitions re-

quires knowledge of the correlations between triplets of cells

(three-cell correlations). To demonstrate that KCA can be used

to infer the dynamics of the full range of transition networks

depicted in Figure 1D, we simulated the transition dynamics of

proliferating cells under different networks for physiologically

relevant transition rates (see the STAR Methods), including

reversible, irreversible, and non-stationary dynamics (Figure S1).

Taken together, these results demonstrate that, at least under

the idealized conditions of these models, KCA enables quantita-

tive inference of diverse cell-state transition networks. Limita-

tions and self-consistency checks on the method are discussed

more below.

To experimentally implement KCA, we developed a platform

that combines two typesofmeasurements: first, using time-lapse

microscopy and custom software (see the STAR Methods),

we track individual cells over multiple generations, as they

grow from a single cell into a microcolony, and use this data to

construct the pedigrees representing the lineage relationships

amongcells,with nogeneexpressionmeasurements (Figure1Ei).

Second, at the end of the movie, we used single-molecule RNA-

FISH (smFISH) (Femino et al., 1998; Raj et al., 2006, 2008) to

measure the expression levels of multiple genes simultaneously,

thereby determining each cell’s endpoint state (Figure 1E, ii–v).

Kin Correlation Analysis Validation by Comparing
Inferred Two-State Switching Dynamics with Direct
Time-Lapse Analysis
To experimentally apply KCA, we proceed in two stages. First,

we validate the method by analyzing switching between two

distinct states of Esrrb expression in mouse ES cells. Second,
Cell Systems 3, 419–433, November 23, 2016 421



Box 1. Kin-Correlation Analysis: Dynamics Can Be Inferred from Correlation Functions of Cellular States on Pedigrees

In this Box, we explain the KCA framework, which enables inference of cell-state transition rates from the degree of clustering of

cell states on pedigrees. We rely on the following definitions:

Lineage distance, u: The number of generations back to the common ancestor of two cells. u= 1 for sisters, u= 2 for first

cousins, etc.

Transition matrix, T: A square N3 Nmatrix, where N denotes the number of cell states, whose I,Jth element is the probability

per cell cycle of a cell transitioning from state J to state I, TðI j JÞ. Each column of this matrix sums to 1.

Reversible dynamics: The dynamics described by a transition matrix is reversible if for any pair of states A and B, the number

of cells transitioning from A to B per unit time is equal to the number transitioning from B to A.

Two-cell correlation functions, C(u): An N 3 N matrix, for each value of u, whose I,Jth element denotes the frequency of

observing a pair of cells at lineage distance u in states I and J.

Three-cell correlation functions, C(u,v): An N 3 N 3 N matrix that is a function of the two lineage distances u and v, which

describe the degree of relatedness of three cells. u is the number of generations to the common ancestor of the two more

closely related cells, while v specifies the number of generations to the common ancestor of all three cells. CIJKðu; vÞ denotes
the frequency of observing the more distant relative in state I and the two more closely related cells in states J and K. Note that

CIJK =CIKJ.

Here, our goal is to show how the transition matrix T can be inferred from the experimentally observable cell state correlation func-

tions,CðuÞ orCðu; vÞ. We first derive the equations for the case where all cell states are equally likely and the dynamics is reversible

(or equivalently when T is symmetric) and then treat the more general case briefly here and in more detail in the STAR Methods.

First, we compute the expected two-cell correlation function for a given transition matrix. Two cells at lineage distance u, shared a

common ancestor in an unknown state M, u generations back. Subsequently, they each experienced u divisions and, potentially,

zero or more state transitions independently of one another. Given the transition matrix for one generation, T, we can compute the

resulting transitionmatrix for u generations by taking T to the uth power: TuðI jMÞ. It follows that the joint-probability of observing the

two cells in states I and J is given by:

CIJðuÞ= 1

N

X
M

TuðI jMÞTuðJ jMÞ= 1

N

X
M

TuðI jMÞTuðM j JÞ= 1

N
T2uðI j JÞ

where the summation is over all possible statesMof the ancestor. Here, by assumption, each state occurswith probability 1/N. The

simplification in the last step follows because T is symmetric.

To infer the dynamics, we work backward to recover matrix T by computing T inferredðuÞ=CðuÞ1=ð2uÞ. For reversible dynamics, the

transition matrix can be fully recovered by simply considering the two-cell correlation functions.

If the occurrence probability of the states is not a constant, we need to modify the equation for T inferredðuÞ. Assume that a given

state I is observed in the population with frequency pI. The condition of reversibility requires that for any given pair of states,

the forward and reverse fluxes must be equal: TðI jMÞpM = TðM j IÞpI. The two-cell correlation matrix is now given by,

CIJðuÞ=pJ

X
M

TuðI jMÞTuðM j JÞ=pJT
2uðI j JÞ

To infer T, above equation can be rearranged to express the transition matrix in terms of the correlation matrix, by first defining a

rescaled correlation matrix, ~CIJðuÞ=p�1
J CIJðuÞ. It then follows that, as in the simpler case, the transition matrix can be recovered by

taking the appropriate root of the matrix ~C, T inferredðuÞ= ~CðuÞ1=ð2uÞ.
Finally, for irreversible dynamics, T cannot be recovered from C directly because the assumption that TðI jMÞpM =TðM j IÞpI, no

longer holds. Intuitively, the two-cell correlations are not sufficient, because they do not provide information about the directionality

of state transitions. However, with a triplet of cells, the state of the ancestor of a cell pair is reflected in the state of its more distant

relative. As a result, three-cell correlations do permit inference of directionality. The expected three-cell correlation functions can

also be computed from the transition matrix T:

CIJKðu; vÞ= 1

N

X
M

 X
S

TuðK jSÞTuðJ jSÞTv�uðS jMÞ
!
TvðI jMÞ;

where S is summed over all possible states of the common ancestor of the twomore closely related cells, andM is summed over all

possible states of the common ancestor of all three cells. In the STARMethods, we describe the full procedure for using three-cell

correlations to infer T for irreversible dynamics.

(Continued on next page)
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we broaden the analysis to determine the transition dynamics of

a larger set of ES cell states.

Esrrb is a transcription factor central to maintaining the naive

pluripotent state, and it plays a critical role in the core pluripo-

tency network (Festuccia et al., 2012; Martello et al., 2012;

Singer et al., 2014; van den Berg et al., 2008). Esrrb upregula-

tion has also been shown to facilitate fibroblast reprogram-

ming to the induced pluripotent state (Feng et al., 2009). Most

importantly here, Esrrb expression in LIF+Serum culture con-

ditions is bimodal, with cells switching between high and low

expression states (Singer et al., 2014).

We constructed a knock-in fluorescent reporter for Esrrb

expression (Figure 2A) and validated the reporter using smFISH

(Figures S2A and S2B). We acquired time-lapse movies (Fig-

ure 2Bi), using custom software to track individual cells over

time and establish the pedigrees (lineage trees) of individual col-

onies (see the STAR Methods). At the end of movie (�48 hr), we

fixed the cells and acquired smFISH measurements of Esrrb

expression (Figure 2B, ii–iiii). Finally, we combined the measure-

ments, assigning smFISH Esrrb expression levels at the last

time point to the corresponding leaves of the tree (Figure 2Di).

Altogether, we analyzed 14 trees (299 cells).

Consistent with previous results, Esrrb exhibited a bimodal

distribution of mRNA copy number by smFISH (Figure 2C)

(Kumar et al., 2014; Singer et al., 2014). To understand this dis-

tribution, we first note that a single state is expected to generate

a distribution of mRNA copy numbers in individual cells, due

to the stochastic, ‘‘bursty’’ nature of transcription and mRNA

degradation, as shown previously (Elowitz et al., 2002; Friedman

et al., 2006; Ozbudak et al., 2002; Peccoud and Ycart, 1995;

Suter et al., 2011). For many genes and cell types, the distribu-

tion of mRNA copy number is well-fit by a negative binomial dis-

tribution (Friedman et al., 2006; Raj et al., 2006). This distribution
is generated when there is a constant probability per unit time of

initiating a transcriptional burst, and the number of mRNAs pro-

duced per burst follows an exponential distribution. For a gene

with two expression states, we expect each state to generate

a negative binomial distribution of mRNA with different burst

rate and burst size parameters. These two distributions will, in

general, overlap. Thus, the bimodal distribution can be explained

as a linear combination of two negative binomial distributions,

one for each expression state.

We fit the observed Esrrb distribution to a linear combination

of two negative binomial distributions. Using this fit, we assigned

each cell a probability of being in either the high or low Esrrb

expression state given its observed transcript count (see the

STAR Methods). Thus, we obtained a probabilistic endpoint

state assignment for each cell on each pedigree (Figure 2Di).

Because of the overlap between the transcript count distribu-

tions of the two Esrrb states, many cells have approximately

equal probability of being in either state. The KCA framework is

compatible with these probabilistic state assignments. When

computing the correlation matrix (Box 1), we account for proba-

bilistic state assignments by summing over all possible pairs

of states, for each pair of cells, weighting each state pair by its

relative probability.When the state assignments aremore ambig-

uous, a larger number of observations (pedigrees) is required

to ensure accurate inference of transition rates (see the STAR

Methods for details).

To infer the rates at which cells switch between Esrrb states,

we analyzed these trees with KCA.We first computed pair corre-

lation matrices for lineage distances u, ranging from 1 to 4 (Fig-

ure 2Dii). As expected, the frequency of observing two cells in the

same Esrrb state decreased with increasing lineage distance.

Next, using KCA, we computed the switching rates that would

give rise to the observed correlation matrices. For stationary
Cell Systems 3, 419–433, November 23, 2016 423
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Figure 2. Inference and Direct Validation of Esrrb Dynamics
(A) The Esrrb-H2B-mCitrine knock-in reporter (top) and PiggyBac integration construct for a palmitoylated-mTurquoise2 (bottom).

(B) (i) An example time-lapsemovie showing H2B-mCitrine fluorescence in a proliferating colony of ES cells. Arrow indicates root cell in (E). Scale bar, 10 mm. (ii) A

composite image of the membrane-mTurquoise2 (white), DAPI (red), and Esrrb transcripts by smFISH (yellow dots). (iii) Heatmap showing Esrrb transcript counts

for each cell in this colony.

(C) The distribution of Esrrb transcript counts can be fit by a linear combination of two negative binomial distributions (solid lines), with indicated population

fractions (percentages).

(D) (i) Lineage tree (pedigree) from examplemovie shown in (B). State assignments on leaves indicate the probability that the cells are in the E+ state (see the STAR

Methods). (ii) The probability of observing a pair of cells both in the E+ state (red), both in the E� state (blue), and as a mixed E+E� pair (green), as a function

of degree of relatedness of the two cells, u. Cell-state transition rates were computed from the observed correlation functions for each value of u. Error bars are SD

(legend continued on next page)
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Markovian dynamics, these rates should not depend on the line-

age distance from which the correlation matrix is computed

(Box 1). The inferred rate of switching from the Esrrb low state

to the Esrrb high state was 0.09 ± 0.03 per cell cycle (errors

are the SD as estimated by bootstrap, see the STAR Methods).

The reverse rate was 0.08 ± 0.02, per cell cycle. These rates

remained constant across lineage distances of u = 1 to 4, con-

sistent with stationary Markovian dynamics (Figure 2D, iii–iv).

We note that the constant inferred rates imply an exponential

waiting time between state transitions, a property of Markovian

dynamics.

To independently validate these inferred Esrrb switching dy-

namics, we next analyzed data from the Esrrb knock-in

fluorescent reporter. We extracted the total fluorescence

from each cell over the duration of the movies. Because

the H2B-mCitrine is stable, its abundance diminishes only

through dilution during cellular division events. These dilution

events correspond to approximately halvings of the fluores-

cent readout from each cell across cell divisions, as evident

in the saw-tooth pattern of the traces shown in Figure 2E, ii

and iii. We therefore focused on the ‘‘promoter activity,’’ or

the rate of accumulation of total fluorescence (slope of the

fluorescence traces shown in Figure 2E, ii and iii), which should

be proportional to the abundance of mRNA in the cell at any

given time (Singer et al., 2014). Indeed, the Esrrb production

rate in the final cell cycle of the movie was strongly correlated

with Esrrb transcript counts measured at the end of the movie,

but not with that of b-actin, a homogenously expressed house-

keeping gene (Figure S2B), providing an internal validation of

both readouts.

To classify Esrrb promoter activity as either high or low, we im-

plemented a threshold on production rate at each time point

throughout the cells’ lineage history (Figure 2Ei). Cell-state tran-

sitions were defined as a change in the promoter activity across

the threshold that persisted for at least one cell cycle (see the

STAR Methods). Examples of transitions can be observed in

plots of total fluorescence trajectories, as shown in Figure 2E,

ii and iii. Transitions from Esrrb low to high states, or high to

low states, occurred with rates of 0.10 ± 0.01 and 0.08 ± 0.01

per cell cycle, respectively (Figure 2Eiv), consistent with the

values inferred by KCA above (errors are the uncertainty in the

observed frequencies due to finite number of observations).

Finally, although this has no bearing on using KCA for inferring

the transition rates, we also checked whether state transitions

were more likely to occur at one particular point of the cell cycle.

However, analysis revealed no strong cell-cycle dependence in
determined by bootstrap. (iii and iv) The probability per cell cycle of transitionin

bootstrap (see the STAR Methods). Inferred rates are (within statistical error) ind

(E) (i–iii) The same pedigree as in (D) with branches displaying accumulation of m

change in the rate of fluorescence accumulation, corresponding to switches betw

events in the time-lapse movies are consistent with inferred rates.

(F) Histogram of the time of occurrence of state transitions (on-events, top panel;

division.

(G) (i) Empirically determined frequency of finding a pair of cells both Esrrb high

tion distance, d, in the colony (in units of average cell diameters). Error bars ar

expected cell state correlation as function of spatial separation distance. The ob

shared lineage alone. (ii) Spatial separation distance correlates weakly with lineag

peak at 1.
these data (Figure 2F). Together, these results suggest that the

KCAmethod can correctly infer the reversible state switching dy-

namics of Esrrb, which appear to be consistent with a constant

switching rate per unit time.

Transition Rates Cannot Be Explained by Local
Intercellular Signaling
One potential effect neglected in this cell-autonomous anal-

ysis is that neighboring cells could interact through a variety of

signaling pathways, potentially impacting cell-state changes in

a non-cell-autonomous fashion. To test whether such effects

play a significant role in the observed Esrrb transition rates, we

computed the correlation of the Esrrb state for pairs of cells as

a function of their spatial separation distance in the colony (Fig-

ure 2Gi). This is possible because in situ single-molecule RNA-

FISH measurements of cell state do not disrupt the spatial

context of individual cells. We observed little cell-state correla-

tion in space, mainly because the ES cells migrated frequently

from one part of the colony to another (Figure 2Gii), as evident

in our time-lapse movies (Movie S1). Nevertheless, because

closely related cells are more likely to be located closer to

each other in space and also share the same state as their com-

mon ancestor, we expect some degree of cell-state correlation

in space from shared lineage history alone. To quantify this ef-

fect, we calculated the expected correlation of Esrrb state as a

function of spatial separation distance from the inferred switch-

ing rates of Esrrb and the observed pedigrees (see the STAR

Methods). This correlation fully explained the observed spatial

correlations (Figure 2Gi), suggesting that, while local signaling

interactions can and likely do occur, they are not required to

explain the observed cell-state transition dynamics in these

conditions.

Characterization of ES Cell States
Having established the inference framework and demonstrated

its application experimentally, we set out to identify other

ES cell states whose transitions could also be analyzed. In

accordance with previous work (Falco et al., 2007; Ivanova

et al., 2006; Lu et al., 2011; Macfarlan et al., 2012; Niwa et al.,

2009; Singer et al., 2014; Singh et al., 2007; Toyooka et al.,

2008; Weidgang et al., 2013; Zalzman et al., 2010), we selected

Esrrb, Tbx3, and Zscan4 as potential cell state markers. To

better characterize their expression distributions, we simulta-

neously measured the mRNA copy number of Esrrb, Tbx3, and

Zscan4, in single ES cells using three-color smFISH. While

RNA sequencing (RNA-seq) enables classification of states by
g from E� to E+ (blue) and from E+ to E� (red). Error bars were obtained by

ependent of u, consistent with stationary Markovian dynamics.

Citrine fluorescence in each cell cycle. Arrows indicate a significant, heritable

een Esrrb states. (iv) Esrrb cell-state transition rates measured from switching

off-events, bottom panel) along the cell cycle in units of hours since the last cell

(red points) or Esrrb low (blue points) as a function of their physical separa-

e SD determined by bootstrap (299 cells, 14 colonies). Dashed lines indicate

served spatial correlations are consistent with the correlations expected from

e distance u. The distribution for each value of u is independently normalized to
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Figure 3. Characterizing a Set of Mouse Embryonic Stem Cell States

(A) Distribution of the transcript counts of Esrrb, Tbx3, and Zscan4 in single cells as determined by smFISH.

(B) Scatterplot of transcript counts by smFISH in 446 cells (individual dots). Color coding indicates assignment of each cell to one of five states. Blue-red

gradations indicate probabilistic assignment of Esrrb expression states.

(C) Example colonies showing groups of related cells in the same expression state for each of the three marker genes (for either the low or high state), consistent

with cell states that persist over multiple generations. Yellow circles indicate transcripts detected by smFISH; red indicates DAPI stained nuclei; white is

palmitoylated-mTurqoise2 demarcating cell membranes.

(D) Sub-populations sorted on indicated marker genes (below columns) exhibit distinct RNA-seq profiles and broad differences in gene expression. Fluores-

cence-activated cell sorting (FACS) was performed based on distinguishable fluorescent reporter genes integrated at Esrrb and Tbx3 loci in the same cell

(Figure S2C), or, separately, based on a Zscan4 reporter integrated by PiggyBac transposition (right). Only genes showing statistically significant differential

expression for the same cell line between sorted subpopulations are shown.

(E) Zscan4+ cells exhibit a distinctive nuclear morphology compared to Zscan4� cells. DAPI stained nuclei (white, left); Zscan4 smFISH dots (yellow, right);

membrane boundaries (red).

(F) Nuclearmorphology correlates withZscan4 expression level (Pearson correlation coefficient =�0.15; p value = 0.002). The number of nuclear puncta detected

in each cell plotted against the number of Zscan4 transcripts in the same cell. The color of each dot indicates the time since that cell’s last division, as determined

by time-lapse microscopy.
high dimensional transcriptional profiles, smFISH yields a higher

resolution of quantitative, amplification-free measurements

albeit with lower dimensionality, enabling estimation of in situ

state assignments from fewer genes. The mRNA copy number

distributions of Tbx3 and Zscan4 were long-tailed (Figure 3A)
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consistent with Kumar et al. (2014) and Zalzman et al. (2010).

For these genes, we identified a threshold that optimally sepa-

rated the mRNA distribution into high and low expression

states and ensured that subsequent results were robust to

the choice of threshold (see the STAR Methods and Figure S3).



By contrast, Esrrb transcript counts exhibited a bimodal dis-

tribution, with overlapping modes (Figure 2C). While binary

classification of three genes could in principle produce 23 = 8

possible states, three of these states were rare (<1% of the

population) or did not occur and were not considered further

(Figure 3B).

Additional experiments supported the notion that these genes

marked heritable cell states. First, many or all cells within individ-

ual colonies could be observed simultaneously expressing large

numbers of transcripts for these genes, suggesting that their

expression states are inherited across cell divisions. Conversely,

whole colonies could also be observed expressing little to none

of these transcripts (Figure 3C). Second, gene expression anal-

ysis of sorted sub-populations exhibited broad differences in

gene expression profiles. Using a double knock-in reporter for

Esrrb and Tbx3 (Figure S2C) and a separate line with a PiggyBac

promoter fragment reporter for Zscan4 (see the STAR Methods),

we sorted out Esrrb/Tbx3 negative (E�T�), Esrrb-positive/Tbx3-

negative (E+T�), and Esrrb/Tbx3 positive (E+T+) cells, as well as

Zscan4-positive (Z+) and Zscan4-negative (Z�) cells, and per-

formed RNA-seq on each sample. We observed hundreds of

genes that were differentially expressed between these states

(Figure 3D), indicating that variations in marker gene expression

do not simply reflect intrinsic noise or fluctuations in the expres-

sion of individual genes, but rather indicate broad transcrip-

tional changes. In particular, we observed decreasing expres-

sion levels of differentiation makers and signaling factors when

going from E�T�, to E+T�, and finally to E+T+ cells, suggesting

that Tbx3 could mark a more pluripotent state. Accordingly,

Zscan4-positive cells displayed a unique nuclear morphology

by DAPI-stain compared with Zscan4-negative cells: while

Zscan4-negative cells appeared to have a larger number of

distinct puncta, Zscan4-positive cells exhibited fewer but larger

puncta (Figures 3E and 3F), potentially suggesting aggregation

of presumed heterochromatin. This result further supports the

notion that Zscan4-positive cells represent a distinct pheno-

typic state. Taken together, these results show that these three

markers define heritable cell states with distinct gene expression

profiles across multiple genes.

Cell-State Transitions Are Restricted
We set out to determine the transition dynamics of these states

using KCA. We acquired �48 hr movies, after which cells were

fixed and stained for Esrrb, Tbx3, and Zscan4 mRNA in the

same cells (Figures 4A and 4B) (see the STAR Methods). Based

on expression, we assigned each cell to one of the five states

described above (Figure 3C). Altogether, we analyzed 41 pedi-

grees with a depth of 4.0 ± 0.5 generations (mean ± SD) (see

Figure 4D for examples and Figure S4 for all trees).

Inspection of these trees revealed cell-state clustering, with

closely related cells (e.g., sisters, first cousins) predominantly

observed in the same state, implying that most states persist

over multiple generations. In particular, Tbx3 and especially

Zscan4 were expressed infrequently (population fractions

of 31% and 8% respectively), but, once expressed, were

typically observed to be ‘‘on’’ in clades of two to eight

cells, consistent with extended (multi-generational) periods

of expression. For this reason, their long-tail mRNA distribu-

tions do not appear to represent brief stochastic bursts, as
was previously hypothesized (Singer et al., 2014). At the

same time, most colonies contained cells in different states,

demonstrating state-switching typically occurs multiple times

in each colony during the movies. Notably, certain state com-

binations were more likely to be found together in the same

pedigree. For example, the E�T�Z+ state was frequently

found in the same pedigree with the E+T+Z� state but almost

never with the E+T�Z� state (Figure S4). Together, these re-

sults indicate that the 48-hr timescale studied here can cap-

ture many transition events in ES cells, making the system

amenable to analysis by KCA.

Mouse Embryonic Stem Cells Exhibit a Chain-like State
Transition Network
To extract the quantitative transition rates, we first computed the

two-cell correlation matrices, which are plotted for sister cell

pairs in Figure 4Ei and for more distantly related cell pairs in

Figure S5A. From these correlations, we inferred the full set of

transition rates between the five states using KCA (Figure 4Eii).

These rates had two notable features: first, most states were

stable over timescales of multiple cell cycles; all but one of the

states showed an inferred half-life of�6 generations. The excep-

tion was E�T+Z�, whose expected half-life is only �1.7 gener-

ations. Second, many potential transitions occur at negligible

rates (within the statistical error), suggesting they are either

disallowed or extremely infrequent (Figure 4Eii). Some of the

negligible, but non-zero, rates could reflect ambiguities in state

assignment when cell transitions from E�T+Z� to E�T�Z+ state

are captured after deactivating Tbx3 but before activating

Zscan4, or vice versa.

From this analysis, the full network of potential transitions

effectively reduces to a linear chain, in which cells transition

stochastically and reversibly only between adjacent states (Fig-

ure 4F). Cells traverse this chain by performing a random walk,

hopping between adjacent states, but on average not moving in

any particular direction. In the Discussion, we describe some

implications of the chain-like cell-state transition network in ES

cells. For now, we note that the chain-like organization of states

constrains the dynamic trajectories of ES cells. For example, it

implies that transitions between 2C-like (Falco et al., 2007;

Macfarlan et al., 2012) and epiblast-like states (Toyooka et al.,

2008) pass through a specific set of long-lived intermediate

states. Thus, to activate Tbx3 starting in the E�T�Z� state,

cells must transition to the Esrrb high state first (E+T�Z�).

Similarly, E�T�Z� cells must transition through the E+T+Z�
state to reach the Zscan4 high state (E�T�Z+). The chain-like

transition network also makes the prediction, which we validated

directly and independently (see the STAR Methods), that during

the transition from E+T+Z� to E�T�Z+, Esrrb and Tbx3 should

turn off almost simultaneously, closely followed by Zscan4

activation, over a timescale comparable to the duration of a cell

cycle. For validation of the inferred dynamics, see the STAR

Methods.

Self-Consistency Checks for Applying KCA to Other
Systems
Thus far, we have considered systems governed by cell-auto-

nomous, time-independent, Markovian dynamics, in which sister

cell transitions are independent of one another. However, many
Cell Systems 3, 419–433, November 23, 2016 427
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Figure 4. State-Switching Dynamics within a Pluripotency Network

(A) Left: time-lapse movie used only for tracking cells to determine pedigrees. Right: in the same cells, smFISH for Esrrb (cyan dots), Tbx3 (green dots), and

Zscan4 (blue dots), as well as membrane-mTurquoise2 (white) and DAPI (red).

(B) Segmented cells are color-coded by transcript count for each gene analyzed.

(C) Pedigree reconstructed from cells tracked in (A) are plotted as a dendrogram, with state assignments and transcript counts for each of the three genes at the

leaves.

(D) Examples of other pedigrees and state assignments (see Figure S4 for complete set).

(E) (i) Frequency of observation of each pair of states in sister cells (two-cell correlations). See Figure S5A for other lineage distances. (ii) Using KCA, the transition

rate matrix was computed from correlation matrices (see Box 1).

(F) Inferred cell-state transition network shows chain-like dynamics.

Statistical errors are SD determined by bootstrap (see STAR Methods).
systems of biological interest may violate one or more of these

conditions. A useful feature of KCA is the redundancy of different

correlation measurements, which can be used to self-consis-

tently check that these necessary conditions are satisfied in

any particular system. Here, we consider several different poten-

tial violations and how they could be detected.
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Some systems may exhibit non-Markovian dynamics, either

because of ‘‘hidden’’ states, or because of ‘‘timed’’ transitions,

in which cells spend a fixed amount of time or number of gener-

ations in a given state rather than exiting the state at a fixed sto-

chastic rate (Norman et al., 2013). Oneway to detect such effects

is to consider the effective transition rates, ~TðuÞ � Cð1=2uÞðuÞ.
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Figure 5. Detecting Deviations from Simple Dynamics Using Self-

Consistency Checks

(A) ‘‘Hidden’’ states can produce apparent non-Markovian dynamics. In this

example, the blue state is actually composed of multiple distinct states

(labeled 1–4), which are not separately identifiable. The blue state is thus a

counter that persists for exactly four generations. KCA applied to the apparent

two-state system generates inferred persistence rates which change sys-

tematically with lineage distance, u, especially near u = 4, causing the inferred

transition rates (right) to depend on lineage distance. Transition rates are

indicated on arrows.

(B) Deviation from simple dynamics resulting from correlated transitions. In this

example, distinct division patterns are indicated with corresponding proba-

bilities, p. Values were chosen such that the joint probability of observing a pair

of sister cells in a pair of states conditional on the state of their parent is not

equal to the product of their marginal probabilities. In this case, inferred

transition rates depend on lineage distance (right).

(C) When transition rates vary with time (left), the inferred transition rates vary

with lineage distance (right). In this example, this effect can be used to infer the

time-varying transition rates (see the STAR Methods).
Without hidden states, these rates are independent of the line-

age distance, u, but with hidden states, they depend on u, as

shown in Figure 5A. Comparing effective transition rates deter-

mined at different lineage distances can thus be used to identify

the existence of one or more hidden states or timers.

Some systems, such as somatic stem cells in cycling tissues

(Clayton et al., 2007; Snippert et al., 2010), exhibit correlated
fate decisions in sister cells. Such correlations produce a

deviation of the effective transition rates from a constant,

particularly at lower values of u, where the correlations be-

tween the fates of sisters exhibit the largest effects (Figure 5B).

If it is already known that decisions are controlled through a

specific class of models, as in Klein and Simons (2011) and

Lopez-Garcia et al. (2010), then this information may still be

sufficient to infer the joint probability of sister fates conditional

on the state of their parent (assuming other requirements of

the method are met) (Hormoz et al., 2015). At the very least,

this deviation can reveal that some assumption of the method

is not satisfied.

Another potential issue is the possibility of time-dependent

transition rates. This would lead to the inference of different

effective transition rates from the two cell-correlation functions

at different lineage distances, u. In principle, it is possible to infer

time-dependent transition rates through measurement of two-

cell correlations at all values of u. Finally, we note that three other

potential deviations from simple Markovian dynamics were pre-

viously discussed above: irreversible transitions (Figure S1C),

non-stationary dynamics (Figure S1D), and effects of local cell

signaling (Figure 2G).

To summarize, the KCA framework relies on measurement of

the two-cell, three-cell, and potentially higher-order correlation

functions at various lineage distances. Because the inference

approach under-fits the measured correlation functions, the

redundancy can be used to validate the assumptions of the

model used for the inference through self-consistency checks.

If this validation fails, the model can be extended to include addi-

tional factors, such as spatial signaling or correlated sister fates,

and the process can be repeated.

DISCUSSION

Although cell-state transitions are central to biology, methods to

measure their rates without cell line engineering, perturbations,

or sorting have been lacking. The KCA approach implemented

here with time-lapse movies and endpoint smFISH provides

such a method.

Applying KCA to ES cells, we discovered a transition network

consisting of a set of reversible transitions along a linear chain

of metastable states (Figure 4F). These states are ordered in a

sequence from 2C-like (totipotency) to the more differentiated

epiblast-like state. Cells traverse this chain through stochastic

reversible transitions, and pluripotency is therefore gained

and lost by ES cells in a stepwise incremental way rather

than continuously or all at once. The highly structured chain-

like transition network dynamics discovered here contrasts

with one prevailing view of ES cell heterogeneity as a noisy pro-

cess consisting of random transitions among all states, as well

as views in which it reflects independent noise in various

genes. It also contrasts with the canonical binary unidirectional

trees observed in many classic developmental systems. More-

over, because all transitions are reversible, this system can be

accurately represented by a one-dimensional energy land-

scape, in which each state can be characterized as a local min-

imum, and transitions can be thought of as stochastic hops to

neighboring states along a reaction coordinate (Waddington,

1940; Sokolik et al., 2015). The chain-like transition network
Cell Systems 3, 419–433, November 23, 2016 429



could ensure that the ES cell culture is comprised primarily of

cells whose recent ancestors were in the E�T�Z+ state, where

telomere length may be extended (Zalzman et al., 2010), poten-

tially enhancing the viability of the culture (see the STAR

Methods and Figure S7).

The transition dynamics of ES cells appear consistent with a

‘‘memory-less’’ Markov process, where transition rates depend

only on the current state. Knowledge of these transition rates

allows us to estimate the timescales required for colonies to

reach an equilibrium distribution of cell states. Based on the

measured rates, it should take �25 generations for a single-

starting ES cell to yield an approximately equilibrium distribution

of cell states. For smaller colonies, however, inter-colony varia-

tion is expected to dominate intra-colony variation. These con-

siderations could help explain incomplete penetrance in directed

differentiation protocols (Ieda et al., 2010; Suzuki et al., 2013;

Vo and Daley, 2015) and reprogramming (Buganim et al., 2012;

Hanna et al., 2009; Smith et al., 2010).

While powerful, KCA also has limitations. First, and most

fundamentally, it applies only to transitions that occur at rates

comparable to or slower than the cell cycle, because transitions

that occur more rapidly leave no signature in the clustering of

states on pedigrees. It is thus well-adapted to developmental

and immunological processes but not well suited to analyze

more rapid or transient physiological responses. Second, as

with phylogenetic reconstruction, we can estimate the likelihood

of a particular series of switching events on a given tree, but we

cannot determine the exact histories of specific cells. Third, the

technique requires previous identification of a set of distinct

states and corresponding marker genes. In the case of ES cells,

inclusion of additional genes could reveal other states that

might have been missed here (Klein et al., 2015; Kumar et al.,

2014; Sasagawa et al., 2013). In this regard, emerging in situ sin-

gle-cell transcriptomic techniques (Chen et al., 2015; Crosetto

et al., 2015; Lubeck and Cai, 2012; Lubeck et al., 2014) are

exciting, as they dramatically expand the number of genes that

can be analyzed in the endpoint FISH-based measurement,

enabling high-dimensional gene expression information with

reduced a priori selection of genes. While we used thresholds

on single genes for discrete state assignment here, such higher

dimensional data could be used with the KCA framework to

infer transition dynamics among a more continuous range of

states, given a sufficient number of observations. Looking for-

ward, the ability to quantify cell-state transition networks should

enable analysis of the effects of genetic perturbations on partic-

ular transition rates. Finally, we note that KCA can also work with

alternative methods for obtaining lineage information (Behjati

et al., 2014; Evrony et al., 2015; Jiang et al., 2013; Navin et al.,

2011; Zong et al., 2012). Thus, we anticipate that the KCA frame-

work will become more capable and broadly applicable in the

future.
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NEBNext Ultra RNA Library Prep Kit for Illumina NEB NEB #E7530

NEBNext hairpin adaptors NEB NEB #E7335

Deposited Data

RNA-seq data This paper GEO: GSE86417

Experimental Models: Cell Lines

Esrrb Reporter Line This paper N/A

Tbx3-Esrrb Reporter Line This paper N/A

Zscan4c Reporter Line This paper N/A

Experimental Models: Organisms/Strains

E14 cells (E14Tg2a.4) Mutant Mouse Regional

Resource Centers

015890-UCD

Recombinant DNA

Donor construct Esrrb T2A-H2B-XFP-P2A-PuroR This paper N/A

Donor construct Esrrb T2A-H2B-XFP-P2A-BlastR This paper N/A

Donor construct Tbx3 T2A-H2B-XFP-P2A-PuroR This paper N/A

Sequence-Based Reagents

CRISPR primers for making the reporter cell lines This paper Table S2

Esrrb smFISH probes This paper Table S1

Tbx3 smFISH probes This paper Table S1

Zscan4c smFISH probes This paper Table S1

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Movie tracking code (MATLAB) This paper N/A

FISH dot detection and counting code (MATLAB) This paper N/A

CellLines Data Visualization Tool This paper N/A

Galaxy Web Server for Tophat and Cufflinks Open web-based N/A

KCA Analysis Code (MATLAB) This paper N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

The Lead Contact M.B.E. is willing to distribute all materials (including constructs and engineered cell lines), datasets, software and

analysis tools, and protocols used in the manuscript. Requests should be made directly to Michael B. Elowitz at melowitz@caltech.

edu or by mail at California Institute of Technology. 1200 E. California Blvd., MC 114-96. Pasadena, CA 91125.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Line Construction and Tissue Culture
E14 cells (E14Tg2a.4) obtained from Mutant Mouse Regional Resource Centers were used as the base line for all cell line construc-

tion. Knock-In reporters were generated using CRISPR/Cas9 with guides targeting the C terminus of the genes of interest (Table S2),

using donor vectors harboring ± 300bp homology to the target locus flanking a T2A-H2B-XFP-P2A-PuroR/BlastR (see Figure S2C).

Single clones were first grown in 2i and isolated based on puromycin resistance and characterized for correct targeting using qPCR

for genomic copy number, and then by a co-localization test of the endogenous targeted gene and XFP by smFISH (Figures S2A and

S2C). For the Zscan4 reporter, the 2570 base pairs upstream of the Zscan4c start codon were used as a promoter fragment reporter

(as described in Zalzman et al., 2010), to drive expression of H2B-mTurquoise2 on a PiggyBac integrated vector, which also

contained a separate Blasticidin resistance cassette under an SV40 promtoer. Cells were maintained at 37�C and 5% CO2 in

GMEM, 10% FBS, 2 mM L-glutamine, 100 units/ml penicillin, 100 ug/ml streptomycin, 1 mM sodium pyruvate, 1000 units/ml

Leukemia Inhibitory Factor (LIF, Millipore), 1X Minimum Essential Medium Non- Essential Amino Acids (MEM NEAA, ThermoFisher)

and 50 uM b-Mercaptoethanol. Cell lines were also stably integrated with a PiggyBac-pGK-palmitoylated-mTurquoise2/HygroR to

enable 3D segmentation of cell membranes.

METHOD DETAILS

Time Lapse Microscopy and Single-Molecule Fluorescence In Situ Hybridization Imaging
For movies, cells were plated on Laminin-511 (BioLamina) in 24-well glass bottom plates (MatTek) six hours prior to the start of the

movie at a density of 2000/well. Snapshots were taken at 12 min intervals for�48 hr, and tracked and segmented using home-grown

MATLAB scripts. Immediately following the end of the movie, cells were fixed in 4% formaldehyde for five minutes at room temper-

ature, and permeabilized in RNase-free 70% ethanol and stored at �20�C overnight. The following day, cells were hybridized for

smFISH overnight at 30�C, where genes of interest were simultaneously targeted with up to 48 20-mer DNA oligos, with each gene’s

probeset coupled to Alexa 555, 594, or 647 (ThermoFisher). Each 20-mer oligo was used at�3nM final concentration. The hybridiza-

tion bufferwas composed of 20% formamide, 2XSSC, 0.1g/ml dextran sulfate, 1mg/ml E.coli tRNA, and 2mMvanadyl ribonucleoside

complex, in nuclease free water. After overnight incubation in hybridization buffer and probes, cells were washed once in 20% Form-

amide and 2X SSC at 30�C for 30min, twice in 2X SSC at room temperature, stained with DAPI, and finally imaged in 2X SSC.

smFISH imaging was performed on a Nikon Ti-E with Perfect Focus, Semrock FISH filtersets, Lumencor Sola illumination, 60x

1.4NA oil objective, and an Andor Zyla 4.2 sCMOS camera. Z-slices of DAPI, membrane-mTurquoise2 and smFISHwere taken every

400nm through the sample. Segmentation of cellular boundaries was performed using the membrane targeted palmitoylated-mTur-

quoise2 with a 3D watershed algorithm. Dots were detected by thresholding on the distribution of local maxima of Laplacian-of-

Gaussian kernel responses performed on each z-slice, with local-maxima defined around a 26-connected-pixel 3D region. Automatic

image registration was performed inMATLAB between the fluorescent protein in the final frame of the movie and DAPI stained image

collected during smFISH imaging.

RNA-Seq
On two separate days for biological replicates, �500,000 were sorted of each subpopulation. Only the top 2% of reporter cells were

collected in the positive gate for Zscan4c, while the lowest 50% were collected for the negative gate. For the Esrrb/Tbx3 double re-

porter (described above), 4% of the population made up the sorted double-negative population, 14% made up the sorted double

positive population, and 63% made up the sorted Esrrb only population. The remaining unsorted cells made up buffer regions
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between subpopulations. Consistent with smFISH results, no Esrrb-/Tbx3+ population was observed. Differences in population frac-

tions from smFISH-estimated population fractions is due to the half-life of the long-lived H2B-fused fluorescent proteins which only

dilute by cellular division. Immediately following the sort, RNAwas extracted using the QIAGEN RNEasyMini kit. 100 base single-end

reads were generated on a HiSeq 2500. Galaxy was used to process RNaseq reads, using the Cufflinks packagewith default options.

Briefly, reads weremapped using default Tophat parameters against themousemm10 genome. Cufflinks was used to estimate tran-

script abundance, and Cuffdiff was used to identify differentially expressed genes within E-T-, E+T-, and E+T+ sets, and then sepa-

rately between Z+ and Z- sets.

QUANTIFICATION AND STATISTICAL ANALYSIS

Kin Correlation Analysis Applied to Non-uniform Cell State Distributions
In Box 1 of the main text, we derived a formula that related the two-cell correlation matrices to the transition matrix, under the

assumption that the dynamics was reversible (or equivalently that it satisfied the condition of detailed balance) and briefly generalized

the result to the case where all the states are not equally likely. Here, we will derive in full detail a formula for inferring the transition

matrix from the observed two-cell correlationmatrices assuming only that the dynamics is reversible. Then, in section 3 below, wewill

further relax the assumption of reversibility, and derive a more general expression using three-cell correlation functions to infer

transition dynamics.

As in Box 1 of themain text, consider a transitionmatrix TðI jMÞ that represents the probability of observing a daughter cell in state I

given that the parent cell was in state M. We assume that a given state I is observed in the population with frequency pI.

With detailed-balance, for any given pair of states, the forward and reverse fluxes must be equal:

TðI jMÞpM =TðM j IÞpI:

The simpler condition used in Box 1 that T is a symmetric matrix, TðI j JÞ=TðJ j IÞ is a special case of this expression, valid when

pI =pJ. A similar condition must hold going from a parent cell in state M to a descendent in state I after two generations:X
s

TðI jSÞTðS jMÞpM =
X
s

TðM jSÞTðS j IÞpI;

where s is summed over all possible state of the intermediate cell between the parent cell and its grand-daughter. The summation is

equivalent to matrix multiplication and can be rewritten as,X
s

TðI jSÞTðS jMÞ=T2ðI jMÞ:

More generally, for a cell in state M and its descendent u generations later in state I, the following condition must be satisfied:

TuðI jMÞpM =TuðM j IÞpI:

The joint probability of observing two cells at lineage distance u in states I and J is given by,

CIJðuÞ=
X
M

TuðI jMÞTuðJ jMÞpM:

Reversibility of the dynamics implies that TuðJ jMÞpM =TuðM j JÞpJ. Making this substitution, we have,

CIJðuÞ=pJ

X
M

TuðI jMÞTuðM j JÞ=pJT
2uðI j JÞ (1)

To infer, we observe the correlation matrixCðuÞ, and solve for the transitionmatrix T. Equation (1) can be rearranged to express the

transition matrix in term of the correlation matrix, by first defining a rescaled correlation matrix,

~CIJðuÞ=p�1
J CIJðuÞ: (2)

It then follows that the transition matrix can be recovered by taking the appropriate root of the matrix ~C,

T = ~C
1=ð2uÞ

: (3)

Kin Correlation Analysis Applied to Time-Varying Transition Rates
Previously, we assumed that transition rates remain constant over time. However, in a developmental context they could change

systematically with time or generation number. In this subsection, we extend the above results to such cases. We still assume

that the dynamics are stationary and reversible. As shown below, it is possible to fully recover time-varying dynamics by using

the two-cell correlation functions at all lineage distances.

Consider a time-varying transition matrix, TðuÞ, where u denotes the number of generations back from the final time-point. u gen-

erations back, the probability of observing a daughter cell in state I conditional on the state M of its parent is given by the I;M th

element of TðuÞ. For an example of such dynamics, see Figure 5C in the main text.
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The two-cell correlation matrix for a pair of cells at lineage distance u takes the form,

CIJðuÞ=pJ

X
M

SuðI jMÞSuðM j JÞ=pJS
2
uðI j JÞ;

whereS is an effective transitionmatrix given by Su =Tð1ÞTð2Þ/TðuÞ, and pJ denotes the endpoint frequency of cells in state J. From

a measurement of the two-cell correlation matrix CðuÞ, Su can be inferred using Equations 2 and 3, namely, define
~CIJðuÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1
J CIJðuÞ

q
. It follows,

Su =

ffiffiffiffiffiffiffiffiffiffi
~CðuÞ

q
To recover the time-varying transition rates TðuÞ, we start at u= 1 and work our way backward to larger values of u. The transition

rates are given by,

Tð1Þ=S1;
Tð2Þ=T�1ð1ÞS2;
Tð3Þ=T�1ð2ÞT�1ð1ÞS3;

«

TðuÞ=T�1ðu� 1Þ/T�1ð2ÞT�1ð1ÞSu:

Lastly, we note that the above framework can be in principle extended to the case of continuous dynamics where the transition

matrix is a continuous function of absolute time back to the common ancestor, i.e., where transitions have an occurrence probability

per unit time (rather than per generation), andwhere this probability itself changeswith absolute time. To do so, the effective transition

matrix, Su, is computed by taking the product integral of the continuous transition rate matrix, T 0, from the current time, t = 0, back to

the time of the common ancestor, t = tc, namely, S0
u = expðR t = tc

t =0 lnT 0ðtÞdtÞ. This formulation accounts for biologically relevant cases in

which the durations of cell cycles vary from cell to cell and/or over time.

Kin Correlation Analysis with Probabilistic State Assignment
We show that the distribution of the Esrrb transcript counts in the low (E-) and high (E+) states overlapped significantly (Figure 2C),

such that it was not possible to assign a definite Esrrb state (either E- or E+) to a cell given a readout of its Esrrb transcript count. Here,

we explain how we assigned probabilistic Esrrb states to each cell, and how the KCA framework is applied to probabilistic states.

First, we fit a sum of two negative binomial distributions to the distribution of Esrrb transcript counts in single cells (black lines in

Figure 2C). Let’s denote the distribution of transcript counts of the E- state as D�ðxÞ and that of the E+ state as D+ ðxÞ, where x is an

integer denoting the transcript count in a given cell. More specifically,D�ðxÞ is the probability that a cell in the E- state will have x Esrrb

transcripts. The fit also has a free parameter that reflects the population fraction of each state. We will denote the population fraction

of the E- state as f� and the population fraction of the E+ state as f+ . It follows that f� + f+ = 1.

The probability that a cell with x Esrrb transcripts is in the E+ state is given by,

p+ =
f+D+ ðxÞ

f�D�ðxÞ+ f+D+ ðxÞ
The probability that the cell is in the E- state is simply p� = 1� p+ . For large transcript counts, e.g., x = 200, f�D�ðxÞz0, which

implies, p+z1. Alternatively, for some intermediate values of transcript counts, e.g., x = 75, f�D�ðxÞ= f+D+ ðxÞ, which implies

p+z0:5, or that the cell is equally likely to be in the E- or the E+ state.

Correlation matrices can be computed using probabilistic states in a similar manner as with definite states. However, whereas with

definite state assignments, each pair of cells in states I and J contributes 1 to the I; J th element of the correlationmatrix and 0 to all the

other elements, with probabilistic state assignments, each pair of cells contributes PIPJ to element CIJ of the correlation matrix.

Lastly, the switching rates can be inferred from the correlation matrices computed using probabilistic states in a similar way as

outlined in the previous section. However, in cases where the overlap between the two distributions is not symmetric, i.e., when it

is more likely to misclassify a cell in the E- state as E+ than vice-versa, we need to first adjust the correlation matrices for incorrect

assignment of states.

On average, the probability that a cell in state J is assigned to state I is given by,

QIJ =

Z
x

fIDIðxÞP
KfKDKðxÞDJðxÞdx
Cell Systems 3, 419–433.e1–e8, November 23, 2016 e4



where the integration runs over all possible values of transcript counts, x, and the summation K is over all states. Q is effectively

a transition matrix satisfying the same properties as T; for example, columns of Q sum to 1. However, unlike T, Q does not capture

actual cell state transitions, but rather effective state transitions caused by measurement errors (for example, ambiguous mapping

from transcript counts to cell state). Thus, we can imagine the dynamics as follows: the state of a cell u generations after its ancestor is

given by the appropriate power of the transition matrix, namely, Tu. The measurement error, at the endpoint, results in one additional

mixing of states as given bymatrixQ. Put together, the probability of observing a given state conditional on the state of the ancestor is

given by the matrix QTu.

To infer the actual transitionmatrix T, wemust first remove the contribution ofQ. The actual population fraction of the states, p, can

be calculated from the measured population fractions, p, as follows,

pM = bQMNpN

where bQ is the inverse of the matrixQ. Similarly, the actual correlation matrix can be calculated from the measured correlation matrix

as follows

C= bQCcQT ;

where
c
QT denotes the inverse of the transpose of matrixQ. The corrected populations fractions, p, and correlation matrix, C, can be

used directly in Equations 2 and 3 above instead of p and C to infer the actual transition matrix.

Computing the Three-Cell Correlation Functions for a General Transition Matrix with Irreversible Dynamics
Here, we derive the general expression for the three-point correlation functions in terms of the transition matrix. As in the previous

section, consider a transition matrix TðI jMÞ that represents the probability of observing a daughter cell in state I given that the parent

cell was in state M. Unlike the previous section, we do not require that TðI jMÞ satisfies the condition of detailed balance, enabling

analysis of cell state transition networks containing irreversible transitions.

Wewould like to calculate the joint probability of observing three cells in states I, J, andK. The degree of relatedness of three cells is

characterized by two lineage distance: u, the number of generations back to the common ancestor of the two more closely related

pair of cells (observed to be in states J and K), and v, the number of generations back to the common ancestor of all three cells (see

Box 1 for a schematic).

The three-cell correlation function takes the form,

CIJKðu; vÞ=
X
M

 X
S

TuðK jSÞTuðJ jSÞTv�uðS jMÞ
!
TvðI jMÞpM; (4)

where the summation overS is over all possible states of the common ancestors of the two cells at lineage distance u. The summation

overM is over all the possible states of the common ancestor of the three cells. pM is the expected probability of observing the com-

mon ancestor of all three cells in state M.

For non-stationary dynamics, the probability of observing the common ancestor in a given state pM changes from generation to

generation. However, pM is still related to the transition matrix in a self-consistent way. Namely, the probability that a cell u gener-

ations back will be in state M is given by

pMðuÞ= Tu0�uðM jNÞpNðu0Þ (5)

where Tu0�uðM jNÞ denotes elementM;N of the transitionmatrix taken to the power of u0 � u. u0 is the number of generations back to

the root of the tree, which is in stateNwith probability pNðu0Þ. Equation (5) captures how the population fraction of each state changes

over time as a function of the initial distribution of the states and the transition matrix.

Equations (2) and (3) are general and do not require reversible (detailed balance) or stationary dynamics. Although an analytical

solution for T in terms of CIJKðu; vÞ is not possible, we can solve the inference problem by considering the elements of the transition

matrix as fitting parameters. We then calculate the expected three-cell correlation functions (Equation 4) and fit them to the observed

three-cell correlation functions (see Methods in the main text for the numerical implementation).

Simulating KCA for Various Types of Dynamics
Using KCA, we were able to accurately infer the underlying cell-state transition network and transition rates in simulations by

observing 30 cell pedigrees of 5 generations (Figure S1). For reversible dynamics like those shown in Figures S1A and S1B, the tran-

sition network was inferred from the two-cell correlation functions. For networks with irreversible dynamics, like those shown in Fig-

ures S1C and S1D, we used the three-cell correlations for the inference. For example, in Figures S1B and S1C, which differ only in the

reversibility of their transitions, the two-cell correlation functions are identical, but the three-cell correlation functions are different and

can be used to infer the directionality of the transitions. Furthermore, we analyzed a previously published model of a 3-state system

containing irreversible transitions among cancer cell states (Gupta et al., 2011), and verified that KCA with three-cell correlations

could indeed infer the previously determined rates (Figure S1E). Finally, we asked whether the KCA framework could be applied

to non-stationary, branching cell fate determination networks, similar to those frequently observed in development and immunology.

We simulated a 3-level branched cell fate tree with specific transition rates, applied KCA, and recovered the correct rates within
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statistical error (Figure S1D). This indicates that accurate inference is possible for branching fate treeswith feasible amounts of exper-

imental data.

Here, we describe the details of the simulations used to generate the results shown in Figure S1. Simulated pedigrees of 5 gen-

erations each were generated using MATLAB. For Figures S1A–S1C, the state of the root was selected randomly from the stationary

distribution of cell states. In Figure S1D, the root was always set to the green state, resulting in a non-stationary distribution of cell

states over the generations. At each generation, every node gave rise to two daughter nodes, whose states were selected randomly

and independently from the probability distribution set by the state of the parent and the transition matrix. The two-cell and three-cell

correlations were directly computed from the simulated pedigrees by measuring the frequency of occurrence of pairs and triplets of

cell states at a given lineage distance over all pedigrees. We simulated 30 pedigrees for the plots in Figures S1A to S1C. For Fig-

ure S1D, we simulated 100 pedigrees. KCA using two-cell correlation functions was conducted on simulated data as outlined above

using the framework in Box 1 and Supporting Information without any fitting. To infer the rates for irreversible dynamics, we used a set

of fitting parameters, corresponding to the independent entries of a general asymmetric transition matrix. We then fit the three-cell

correlation functions predicted from this transition matrix (see the STARMethods) to the observed three-cell correlation functions. A

non-linear least square fitting algorithm was used (implemented in MATLAB) to minimize the residual.

Direct Measurement of Esrrb Switching Dynamics
We tracked and segmented each cell in time-lapse movies of colony growth using automated software and manual corrections,

similar to previously described (Singer et al., 2014). By integrating the background corrected pixel intensity in the nucleus of each

cell, we obtained the accumulated level of H2B-mCitrine fluorescence at every point along each cell cycle. The rate at which fluo-

rescence accumulated was used to estimate the promoter activity of Esrrb. To identify changes in promoter activity that corre-

sponded to state switching, we fit either a single line, or two piece-wise linear segments to the fluorescence readout of each cell using

a least-squares method, implemented in MATLAB. The first and last hour of each cell cycle was discarded to ensure reliable fluores-

cence readout despite cell division.We used two criteria to identify state switching events: 1) the change in the slope across a division

or between the segments of the two-line fit had to exceed a significance threshold. 2) A significant change in the slope (increase or

decrease) had to persist into the subsequent cell cycle after division. The candidate switching events were identified automatically

using a script implemented in MATLAB and then verified manually.

Computing the Predicted Spatial Correlation Functions for Esrrb
We calculated the expected correlation of Esrrb state as a function of spatial separation distance from the inferred switching rates of

Esrrb and the observed pedigrees as follows,

CIJðrÞ=
X
u

qðr j uÞpðuÞ
X
M

TuðI jMÞTuðJ jMÞpM

where qðr juÞ is the empirically determined probability of observing two cells at lineage distance u at spatial separation distance r;

qðr j uÞ is plotted in Figure 2Gii. pðuÞ is the probability that two randomly chosen cells will be at lineage distance u. This was empirically

computed using the set of observed pedigrees. The expected and directly observed spatial correlation are plotted in Figure 2Gi.

Selecting Marker Genes for the ES Pluripotency States
Previous studies have revealed that ES colonies exhibit a heterogeneous set of states potentially related to early embryonic cell

types. For example, recent evidence identified a subpopulation of cells that express Zscan4, potentially corresponding to the toti-

potent 2 cell (2C)-state (Falco et al., 2007; Macfarlan et al., 2012). This state is also associated with telomere-elongation, essential

for long-term culture in vitro (Zalzman et al., 2010) (although Zscan4 has also been shown to be activated by DNA damage responses

and PI3K signaling) (Storm et al., 2014). Furthermore, representing slightly later stages of development, both inner cell mass (ICM)-

like and epiblast-like stages can be identified and distinguished in culture by the high or low expression, respectively, of a cluster of

correlated genes that includes Rex1, Nanog, and Esrrb. The totipotent state, marked by Zscan4 expression, shows lowRex1/Nanog/

Esrrb expression (Singer et al., 2014), potentially defining a sub-population among Rex1/Nanog/Esrrb-low cells. Finally, we identified

a complementary sub-population within the Rex1/Nanog/Esrrb-high population, marked by expression of Tbx3. Tbx3 has been

shown to destabilize pluripotency when lost or overexpressed. It also appears critical for mesendoderm specification, and its expres-

sion may change the global levels of DNA methylation in mouse ES cells (Dan et al., 2013; Ivanova et al., 2006; Lu et al., 2011; Niwa

et al., 2009; Weidgang et al., 2013). However, it remains unclear how Tbx3 expression emerges dynamically from these states.

As described in the main text, to verify that changes in the expression levels of the marker genes corresponded to collective

changes in expression levels of multiple genes, we performed RNA-seq on subpopulations of cells sorted using fluorescent reporters

for the three marker genes described above. We sorted out Esrrb/Tbx3 negative (E-T-), Esrrb-positive/Tbx3-negative (E+T-), and

Esrrb/Tbx3 positive (E+T+) cells, as well as Zscan4-positive (Z+) and –negative (Z-) cells, and observed hundreds of genes that

were differentially expressed between these states (Figure 3D), indicating that variations in marker gene expression do not simply

reflect intrinsic noise, or fluctuations in the expression of individual genes, but rather indicate broad transcriptional changes. More

specifically, compared with E+T- cells, E-T- cells expressed lower levels of pluripotency regulators (Figure 3Di), and higher levels

of differentiation markers and signaling proteins (Figure 3Dii). In contrast, E+T+ cells showed reduced expression levels of signaling

proteins and differentiation markers and increased levels of pluripotency genes compared to E+T-, suggesting that Tbx3 could
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mark a more pluripotent state. Moreover, we observed increased expression levels of 2C-associated genes like Tmem92, Tcstv3,

Tdpoz3/4, and Zfp352 in the Zscan4-positive cells compared with the Zscan4-negative cells (Figure 3Diii). This result is consistent

with Zscan4 marking the previously reported 2C-like state (Macfarlan et al., 2012).

Assigning Cells to the Pluripotent States
The probabilistic assignment of the Esrrb state is presented in Figure 2C and the STAR Methods. T+ state was defined as Tbx3

transcript counts larger than 15. A threshold was obtained by comparing transcript counts to the direct observation of the promoter

activity of Tbx3 gene in individual ES cells that had a knock-in fluorescent reporter for both endogenous loci of the Tbx3 gene (see

Figures S2Ci and S2D). Zscan4 expression levels were observed to be largely binary (Figure 3A). We used a threshold of 50 tran-

scripts to assign cells to the Z+ state. Cells that were in the Z- and T+ states but were also in the E- state with a confidence level

of at least 80% were assigned to the E-T+Z- state. We discarded any cells that were in the Z+ state but were also in the T+ state

and/or the E+ state with a confidence level of 80% or higher (composing < 1% of observed cells). The inference results were not sen-

sitive to changes in the thresholds used in defining the pluripotency states (see Figure S3).

Inferring the Transition Rates
In Figure 4F, we directly inferred the transition rates from the two-cell correlationmatrices and the population fractions of each state –

without fitting – using the formalism in Box 1, and its generalization to non-uniform population fractions outlined in the STARMethods.

Each transition rate in Figure 4F is the rate that had the smallest statistical error of the three rates inferred for the same transition from

the two-cell correlation matrices at distances u = 1 to u = 3. The statistical error of the inferred transition rates was computed by

bootstrapping over individual colonies: we randomly selected with replacement the same number of colonies as in the original data-

set, with the probability of selecting a given colony proportional to the number of cells that it contained. KCA was performed on the

resampled data 1000 times to estimate the variability in the inferred rates.

Self-Consistency Checks on the Inferred Transition Dynamics
In this section, we validate the inferred ES cell state dynamics presented in the Results section of the main text and Figure 4.

First, the inference assumes that ES cell state dynamics are accurately represented as a stationaryMarkovian process with revers-

ible transitions. If true, transition rates inferred from correlations between cells at different lineage distances (e.g., sisters versus

cousins) should produce the same result. In fact, this was observed within statistical error (Figure S5B).

Second, it is often of great biological interest to know whether a given transition is reversible or irreversible, for example in the

context of ‘‘de-differentiation’’ (see main text, Introduction). To test whether the system exhibits irreversible transitions we next

computed the three-cell correlations (Main Text, Box 1). Recall that reversible dynamics can be correctly inferred using only the

two-cell correlation functions. For such dynamics, the three-cell correlations should not contain any additional information about

the dynamics beyond that found in the two-cell correlations. Therefore, observing the two-cell correlations should be sufficient to

predict the three-cell correlations. Indeed, the three-cell correlation functions measured on the observed trees were consistent

with the predicted values, validating the reversibility of the transitions (Figure S6).

Third, we tested the specific qualitative prediction that Zscan4-positive cells are generated from E+T+Z- cells that inactivate Esrrb

and Tbx3 in close succession right before activating Zscan4. To test this prediction, we acquired time-lapsemovies of Esrrb and Tbx3

using the double reporter described above, and then used smFISH to measure the endpoint expression levels of Zscan4 in the same

cells. In all cells where Zscan4 was high by smFISH at the movies’ end (11 trees had at least one Z+ cell), Esrrb and Tbx3 reporters

were observed to turn off within a single cell cycle of one another, as predicted. Examples are shown in Figure S5D.

Fourth, we verified that, where they overlapped, our results agreed with previous work on ES cell dynamics. For example, the rates

of transition between the high and low metastable states of Nanog or Zscan4 matched those observed from measurements of en-

gineered reporter lines using re-equilibration following sorting or direct movie-based analysis (Chambers et al., 2007;Macfarlan et al.,

2012; Miyanari and Torres-Padilla, 2012; Zalzman et al., 2010). Taken together, the self-consistency of the method, the direct exper-

imental validation, and the agreement with previous work strongly support the notion that the KCA approach developed here can

correctly infer state transition dynamics.

The Two-State Model of Esrrb Figure 2 Is Consistent with the Inferred Chain-like Model in Figure 4
In the main text, we inferred the transition rates between Esrrb low (E-) and high (E+) states and showed that Esrrb switching dy-

namics is well approximated by a two-state Markovian process (Figure 2). We also analyzed transitions across a more general

network including 5 states, which is also well-approximated as a Markovian stochastic process (Figure 4F). How can the same

cellular dynamics be compatible with both models?

The existence of internal sub-states is not generally consistent with Markovian dynamics among the two Esrrb states. A two-state

Markovian model implies that during any interval of time, there is a constant probability of transitioning from one state to another (for

example, E- to E+). However, in the presence of sub-states, the probability of exiting the E- or E+ statewill depend onwhich sub-state

the cell is in.

The five-state transition network need not be compatible with effective two-state Markovian dynamics for Esrrb. However, we

show here that for the specific transition rates in this case, the two-state reduction of the five-state model is still well-approximated

by a two-state Markovian model within the statistical limitations of our finite datasets. More specifically, we simulated the five-state
e7 Cell Systems 3, 419–433.e1–e8, November 23, 2016



model (Figure 4F) for 14 trees of 4 generations (same number of trees and generations as the data in Figures 2D and 2E). We then

assigned states solely based on the Esrrb state, effectively ignoring the Tbx3 and Zscan4 expression levels. That is, E-T-Z- and

E-T-Z+, and E-T+Z- cells were assigned to the E- state, while E+T-Z- and E+T+Z- cells were assigned to the E+ state. Note that

this is equivalent to the measurements in Figure 2, where only Esrrb expression level is used to designate cell state, with the expres-

sion levels of the other genes ignored.

We then used the KCA framework to infer the transition matrix of Esrrb dynamics. The simulations were repeated 10,000 times to

estimate the statistical uncertainly of the inference. Within statistical error, the transition rates inferred from pairs of cells at all lineage

distances from u = 1 to u = 4 were equivalent, consistent with a two-state Markovianmodel. In fact, we needed tomeasuremore than

5,000 end-state cells before a statistically significant deviation from the two-state Markovian model could be observed. In that case,

the five-state model fits the data significantly better than the two-state model. The key point is that although the five-state model is a

more accurate description of Esrrb dynamics, by correctly accounting for the internal sub-states within the E- and E+ states, the two-

state model remains approximately valid within the statistical limitations of our finite dataset.

Potential Benefits of Chain-like State Transition Networks
The inferred cell-state transition network in ES cells is a linear chain of 5 states. What implications does this type of transition network

have for the maintenance of ES cells in culture, and for other systems that might utilize similar transition networks?

Previous work has suggested that to maintain a healthy population of ES cells in culture, each cell must transition through the

E-T-Z+ state at someminimum frequency (Zalzman et al., 2010). This requirement was shown to be related to processes of telomere

extension via telomere sister chromatid exchange (Zalzman et al., 2010) and global epigenetic resetting (Akiyama et al., 2015), which

occur specifically in the Zscan4-positive state and helps maintain genomic stability and normal karyotype, and in turn the cell’s

potential to proliferate. Based on this, we asked how the different stationary networks shown in Figure 1D compare in the frequency

with which cells visit the E-T-Z+ state.

To elucidate the differences between network architectures, we consider a simplified five state network where the last state (green

color in Figure S7) plays a role equivalent to that of the E-T-Z+ state. That is, the viability of each cell depends on the number of gener-

ations thathaveelapsedsince it lastoccupied thisstate. Theother four states (redcolor) havenobearingonviability. For eachof the three

networks, we set all inter-state transition rates to identical values, ensuring equal population fractions for each state (Figure S7). More-

over, we selected the transition rates to ensure that the flux of the cells into the green state was the same for all three networks.

Every time a simulated cell visited the green state, we tabulated the number of generations elapsed since itsmost recent ancestor left

that state. This represents thedistributionof ‘‘waiting times’’ betweenconsecutivevisits to thegreenstate.Sinceweselected the rates to

ensure equal population fractions and equal fluxes into the green state, the mean waiting time for the three networks is identical.

Strikingly, however, the distributions of waiting times are very different for the different networks. In particular, the linear chain

network results in a long-tailed distribution, where most cells return to the green state after a brief number of generations, but a rela-

tively few cells spend amuch larger amount time between consecutive visits, and therefore exhibit waiting timesmuch longer than the

average (Figure S7A). The short waiting time for most cells is balanced by the exceptionally long waiting times of a minority. This is

also reflected in the difference between themean andmedianwaiting time. By contrast, in the cyclemotif (Figure S7B), almost all cells

spend approximately the same amount of time between consecutive visits to the green state (close to the mean waiting time). Finally,

the all-to-all network (Figure S7C) has a long-tailed waiting time distribution similar to that of the chain-like motif. However, the dif-

ference between its median and mean is not as pronounced.

What are the implications of these differences in waiting time distributions? In the chain, the relatively large discrepancy between

the median and the mean implies that most cells would have relatively recently visited the Zscan4-positive state, increasing their

viability. This is achieved at the expense of a relatively small fraction cells that experience significantly longer waiting times, and there-

fore presumably would show reduced viability. In this way, the chain-like network could be advantageous in the cell culture context.

Similar effects could also make this type of network advantageous in other contexts where a system may need to optimize for the

largest fraction of cells entering into a critical state over time.

DATA AND SOFTWARE AVAILABILITY

All the analysis software, including those used for movie tracking, FISH dot detection/counting, and KCA analysis is available upon

request (see CONTACT FOR REAGENT AND RESOURCE SHARING). The data visualization package is also hosted on the Elowitz

lab website: http://www.elowitz.caltech.edu/.

The accession number for the data reported in this paper is NCBI’s GEO: GSE86417.

ADDITIONAL RESOURCES

The complete end-point FISH data and the associated lineage relationships is available on the Elowitz lab website (http://www.

elowitz.caltech.edu/) for interactive viewing using a novel visualization tool, CellLines, developed by the Elowitz Lab in collaboration

with the Caltech Data Visualization Program.
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Supplementary	Movie	1;	related	to	Figure	2.		Time-lapse	movie	shown	in	Fig	2B	of	H2B-mCitrine	driven	

by	Esrrb.	Closely	related	cells	quickly	mix	in	space	with	more	distantly	related	cells.	

	

Supplementary	Table	1;	related	to	Figures	2-4.		Sequences	of	smFISH	probes	used	to	detect	transcripts	

of	Esrrb,	Tbx3,	and	Zscan4.	

	

Supplementary	 Table	 2;	 related	 to	 Figures	 2	 and	 3.	 	 Sequences	 of	 the	 C-terminus	 regions	 of	 the	

endogenous	genes	Esrrb	and	Tbx3	used	as	CRISPR/Cas9	targets	to	make	the	Esrrb-mCitrine	reporter	line	

(Figure	2)	and	the	double	(Esrrb-mCherry	and	Tbx3-mCitrine)	reporter	line	(Figure	3	and	S5).		

	

Supplementary	Table	3;	related	to	Figure	3.		RNA-seq	mapped	reads	for	the	five	subpopulations	of	cells,	

Z-,	Z+,	E-T-,	E+T-,	and	E+T+.	

	

Supplemental	Figure	Captions	

Figure	S1.	KCA	can	infer	the	dynamics	of	a	full	range	of	cell	state	transition	networks;	related	to	Figure	

1.	(A)	(i)	Chain-like	linear	transition	network.	(A.ii)	Example	pedigree	showing	typical	transitions	for	the	

network	in	A.i	in	a	proliferating	colony	of	cells.	(A.iii)	Two-cell	correlation	matrix	for	sister	cells	(u=1).	(A.iv)	

Three-cell	correlation	matrices	for	triplets	of	cells	at	lineage	distance	u=1,v=2.	(A.v)	The	inferred	transition	

network	from	the	two-cell	correlation	functions	measured	over	30	simulated	trees	of	5	generations	(using	

the	framework	in	Box	1).	(B)	(i)	Same	as	in	A	but	for	a	transition	network	comprised	of	a	reversible	cycle.	

(B.ii)	A	red	cell	can	directly	give	rise	to	a	progeny	in	either	the	blue	or	green	states	(red	boxes).	(Biii-v)	

same	as	in	A	but	for	the	reversible	cycle	network.	(C)	(i)Three-state	cycle	with	irreversible	transition.	(C.ii)	

Only	green	cells	can	emerge	as	progenies	of	red	cells	(red	boxes).	Two-cell	correlation	functions	do	not	

capture	the	unidirectional	nature	of	these	transitions.	Note	that	the	two-cell	correlation	matrices	are	the	



same	 in	 B.iii	 and	 C.iii.	 The	 three-cell	 correlation	 functions,	 however,	 are	 different	 between	 the	 two	

transition	networks.	In	B.iv,	the	joint	probability	of	observing	the	more	distant	relative	of	a	triplet	of	cells	

and	one	of	the	two	more	closely	related	cells	in	the	red	state	is	the	same	when	the	third	cell	is	in	the	green	

state	or	the	blue	state	(outlined),	consistent	with	reversible	transitions.	This	is	because	a	red	cell	can	give	

rise	 to	 both	 green	 and	 blue	 progenies.	 In	 C.iv,	 however,	 the	 joint-probability	 of	 observing	 the	 same	

configuration	is	significantly	higher	when	the	third	cell	 is	 in	the	green	state	than	when	it	 is	 in	the	blue	

state	(boxed	in	red),	consistent	with	the	fact	that	red	cells	can	only	give	rise	to	green	cells.	To	infer	the	

dynamics	of	the	irreversible	cycle	(C.v),	we	used	three-cell	correlation	functions	(see	STAR	Methods).	(D)	

Example	of	 a	 developmental	 decision	 tree	with	 irreversible	directional	 transitions,	 and	non-stationary	

dynamics.	All	cells	initially	start	off	in	the	green	state	and	eventually	transition	to	the	terminal	states	at	

the	bottom	of	the	tree.	KCA	applied	to	three-cell	correlation	functions	can	be	used	to	infer	the	dynamics	

of	this	system,	as	demonstrated	here	using	100	simulated	trees	of	size	5	generations	(right).	(E)	Recovery	

of	Transition	Rates	Using	KCA	from	a	Cancer	System	with	Irreversible	Transitions.	Example	of	measured	

cell	state	transition	dynamics	in	cancer	cell	lines	(Gupta	et	al.,	2011).	This	system	violates	the	condition	of	

reversibility.	 Deviation	 of	 the	 inferred	 rates	 from	 the	 actual	 rates	 as	 a	 function	 of	 number	 of	 trees	

simulated.	Three-cell	correlation	functions,	but	not	two-cell	correlation	functions,	are	sufficient	to	infer	

the	full	dynamics	with	arbitrary	accuracy,	with	increasing	number	of	observations.		The	deviation	of	the	

inferred	transition	matrix	from	the	actual	one	was	computed	as	 !"#$%&'$( − !"#
"*+,--,. /

"# 	.	

	

Figure	S2.	Validation	of	the	Esrrb	reporter	cell	line;	related	to	Figure	2.	

(A)	smFISH	analysis	of	endogenous	Esrrb	transcripts	and	knock-in	Esrrb	reporter	transcripts	in	the	same	

cell.	Note	that	transcripts	appear	in	both	channels,	including	both	active	transcriptional	sites	(bright	foci,	

blue	 arrows)	 and	 individual	 cytoplasmic	 mRNA	 molecules	 (dimmer	 dots).	 This	 indicates	 successful	



homozygous	 targeting	of	 the	Esrrb	 locus.	 	 (B)	Esrrb	promoter	activity	(PA)	extracted	 from	the	 final	cell	

cycle	of	movies	before	 fixation	(see	Methods)	correlates	well	with	Esrrb	 transcript	count	at	 final	 time-

point	 (r=0.71),	measured	by	 smFISH	 (left).	Note	 that	1-Actin,	 a	negative	 control,	 shows	much	weaker	

correlation	 (r=0.31)	 with	 Esrrb	 promoter	 activity	 (right).	 (C)	 In	 order	 to	 sort	 cells	 and	 independently	

validate	the	inferred	chain-like	dynamics	with	movies,	we	constructed	a	second	cell	line	containing	non-

perturbing	reporters	for	Esrrb	and	Tbx3	(schematic,	see	methods	for	knock-in	construction).	This	line	was	

validated	 by	 checking	 for	 co-localization	 of	mCitrine	transcripts	 with	 Tbx3	 transcripts	(i)	

and	mCherry	transcripts	with	Esrrb	transcripts	(ii),	 and	 by	 genomic	 PCR	 (not	 shown).		Note	 that	while	

almost	all	mCitrine	transcripts	co-localize	with	Tbx3	transcripts,	indicating	a	double	(homozygous)	knock-

in,	only	half	 the	mCherry	transcripts	co-localize	with	Esrrb,	 indicating	that	the	fluorescent	reporter	was	

incorporated	into	one	Esrrb	allele.	(D)	Tbx3	promoter	activity	is	correlated	with	Tbx3	transcript	count.	By	

tracking	movies	of	the	Tbx3-mCitrine	fluorescence,	we	computed	promoter	activity	and	used	smFISH	to	

quantify	Tbx3	 transcripts	at	 the	endpoint.	Here,	we	plot	mRNA	copy	number	versus	promoter	activity	

averaged	 over	 the	 final	 cell	 cycle.	 Transcript-counts	 higher	 than	 15	 reliably	 correspond	 to	 significant	

promoter	activity.	

	

Figure	S3.	Robustness	of	the	inference	results	to	the	choice	of	Tbx3	and	Zscan4	thresholds;	related	to	

Figure	4.	

In	this	figure,	we	show	that	the	inferred	transition	rate	matrix	does	not	depend	sensitively	on	the	choice	

of	transcript-count	thresholds	used	to	define	the	high	and	low	states	for	the	genes	Tbx3	and	Esrrb.	(A)	We	

varied	the	threshold	for	assigning	a	cell	to	the	Tbx3-high	(T+)	state	from	10	to	30	transcripts.	We	then	

repeated	 the	 same	 analysis	 as	 in	 Fig.	 4E,F	 and	 inferred	 the	 transition	 rate	matrix	 from	 the	 observed	

correlation	 functions.	 Each	matrix	 shows	 the	deviation	of	 the	 inferred	 transition	 rate	matrix	 from	 the	

reference	transition	rate	matrix	inferred	using	a	threshold	of	15	transcripts	(the	threshold	used	for	the	



analysis	 in	Fig.	4).	The	deviations	are	normalized	by	the	standard	deviation	of	 the	reference	transition	

rates	computed	using	bootstrap	over	all	the	colonies	(the	error	bars	shown	in	Fig.	4Eii,F).	The	inferred	

transition	 rates	 are	 not	 significantly	 different	 for	 Tbx3	 thresholds	 of	 10	 to	 17	 transcripts.	 For	 higher	

thresholds,	a	significant	rate	emerges	for	the	transition	from	the	E+T-Z-	state	to	the	transient	E-T+Z-	state.	

This	is	because	at	higher	thresholds	cells	that	should	be	classified	as	E+T+Z-	are	instead	classified	as	E+T-

Z-.	(B)	The	deviation	between	the	inferred	transition	matrix	at	a	given	threshold	from	the	reference	matrix	

(evaluated	 at	 threshold	 15)	 computed	 using	 the	 Frobenius	 distance	 of	 the	 two	 matrices;	 Frobenius	

distance	 of	 two	matrices	2 	and	3 	is	 defined	 as	4(2, 3) = 2",# − 3",#
/

",# .	 The	 dashed	 line	 is	 the	

deviation	expected	solely	from	the	statistical	uncertainty	in	the	rates	of	the	reference	transition	matrix	

that	stems	from	the	finite	size	of	the	data;	two	transition	matrices	 inferred	using	the	same	thresholds	

from	the	same	number	of	observed	trees	in	different	iterations	of	the	experiment	will	on	average	deviate	

by	this	much.	At	high	thresholds,	the	inferred	transition	rate	matrix	is	significantly	different.	To	directly	

verify	that	a	threshold	of	around	15	indeed	corresponds	to	activation	of	Tbx3,	we	used	a	Tbx3-mCitrine	

knock-in	cell	line	(see	main	text	for	description	and	Figure	S2D).	(C)	Same	analysis	as	in	(A)	but	with	the	

Tbx3	threshold	fixed	at	15	and	the	Zscan4	threshold	varied	from	10	to	250.	Because	Zscan4	on	cells	can	

produce	roughly	hundred	to	thousands	of	transcripts	(Fig.	3A),	we	do	not	expect	significant	sensitivity	on	

the	Zscan4	threshold,	as	long	as	the	threshold	is	sufficiently	large	to	capture	these	events.	The	plots	show	

the	 normalized	 deviation	 between	 the	 transition	matrices	 inferred	 using	 various	 thresholds	 from	 the	

reference	 matrix	 that	 is	 inferred	 using	 a	 threshold	 of	 50.	 (D)	 The	 Frobenius	 distance	 between	 the	

transition	rate	matrices	at	different	thresholds	from	the	reference	matrix.	The	inferred	transition	rates	do	

not	change	significantly	as	the	threshold	is	changed	from	50	to	250	counts.	

	

	

	



Figure	S4.	Pedigrees	reveal	limited	combinations	of	states;	related	to	Figure	4.	

Pedigrees,	gene	expression	levels,	and	cell	state	assignments	for	the	41	measured	trees	used	to	analyze	

the	Tbx3,	Esrrb,	 and	Zscan4	 states.	Closely	 related	cells	 are	 typically	 found	 in	 the	 same	state.	 Specific	

combinations	of	states	occur	frequently	(e.g.	E-T-Z-	(blue)	cells	are	related	to	E+T-Z-	(red)	cells).	The	gene	

expression	columns	correspond	to	expression	levels	of	Esrrb,	Tbx3,	and	Zscan4	from	left	to	right.	

	

Figure	S5.	Inference	and	validation	of	a	five-state	network	in	ESCs;	related	to	Figure	4.	

(A)	The	two-cell	correlation	matrix	of	the	trees	in	Figure	S4	for	pairs	of	cells	at	lineage	distance	u	=	2	(top)	

and	lineage	distance	u	=	3	(bottom).	(B)	For	each	of	the	five	states	in	Figure	3,	we	plot	the	inferred	state	

stability	(diagonal	terms	of	the	transition	matrix)	as	a	function	of	lineage	distance,	9.	Dashed	line	serves	

as	a	guide	for	the	eye	to	indicate	constant	rates	over	time.	Note	that	rates	are	constant	with	respect	to	9	

within	error	bars,	estimated	by	bootstrap.	(C)	To	verify	that	the	chain-like	model	(Fig.	4F)	 is	consistent	

with	the	two-state	approximation	of	Esrrb	dynamics	in	Figure	2,	we	simulated	the	dynamics	of	the	5-state	

chain	 for	 14	 trees	 of	 4	 generations	 each.	 We	 discarded	Tbx3	 and	 Zscan4	information,	 and	

assigned	each	cell	to	 a	state	only	 based	 on	 its	Esrrb	 level.	 KCA	 was	 used	 to	 infer	the	 transition	 rates	

between	 the	two	composite	 Esrrb	states.	 Simulations	 were	 repeated	 10,000	 times	 to	 estimate	 the	

statistical	error	of	the	inferred	rates.	Note	that	inferred	rates	were	consistent	with	measured	rates	for	

Esrrb	dynamics	(Fig.	2Eiv)	(blue	line	indicates	low	to	high	transition	rate,	and	red	line	indicates	high	to	low	

transition	 rate).	 Thus,	although	 Esrrb	dynamics	 are	 not	 precisely	 described	 by	 a	 two-state	Markovian	

process,	they	are	nevertheless	well-approximated	by	such	a	model	within	the	statistical	limits	of	the	data	

sets	obtained	here.	At	the	same	time,	the	5-state	linear	chain	inferred	in	Figure	4	provides	a	more	accurate	

description	of	these	dynamics	(see	STAR	Methods).		(D)	The	inferred	5-state	chain	(Fig.	4F)	predicts	that	E-

T-Z+	cells	emerge	from	E+T+Z-	via	a	transient	state	(black	circle).	As	a	result,	Esrrb	and	Tbx3	should	both	

turn	off	almost	simultaneously	just	prior	to	Zscan4	activation.	Using	the	Tbx3/Esrrb	double	reporter	line	



(Fig.	S2C),	we	observed	these	predicted	dynamics	 in	movies.	Here,	three	example	of	abrupt	and	nearly	

simultaneous	 shut-off	 of	 both	Esrrb	and	 Tbx3	 near	 the	 end	 of	 the	 movie	 (event	 indicated	 by	 the	

arrowheads,	and	subsequent	plateauing	of	total	 fluorescence	 in	each	trace,	consistent	with	no	further	

fluorescent	protein	expression),	and	subsequent	expression	of	Zscan4	by	smFISH	(right);	also	shown	is	the	

DAPI	stained	nucleus	of	the	same	cells.		

	

Figure	S6.	Three-point	analysis	of	the	ES	cell	state	transition	network;	related	to	Figure	4.	

Comparison	of	the	two-cell	and	the	three-cell	correlation	analysis.	The	predicted	and	the	observed	three-

cell	correlation	functions.	Left	column:	the	calculated	three-cell	correlation	functions	for	a	triplet	of	cells	

at	 lineage	 distances	u=1	 and	 v=2,	 computed	 from	the	transition	 rates	 inferred	from	 the	 two-cell	

correlation	functions	shown	in	Figure	4E.	See	STAR	Methods	for	how	the	three-cell	correlation	functions	

are	calculated	from	the	transition	matrix.	The	three-cell	correlations	are	5x5x5	matrices,	represented	here	

as	5	square	5x5	matrices.	The	second	column	shows	the	actual	three-cell	correlations	measured	directly	

using	 the	 observed	 trees	 (Figure	 S4).	 The	 third	 column	shows	 the	 corresponding	 statistical	error	

(fractional	error	of	each	entry)	in	the	rightmost	column.	Notice	that	the	predicted	three-cell	correlation	

functions	are	consistent	with	the	observed	three-cell	correlation	functions,	validating	the	inferred	chain.	

This	 is	 also	 shown	 in	 the	 plots	 at	 the	 bottom.	 Left	 plot	 shows	 the	 predicted	 versus	 actual	 three-cell	

correlations,	and	statistical	errors.	In	this	plot,	each	point	represents	one	of	the	75	independent	matrix	

elements	(for	N	states,	there	are		N^2(N+1)/2	unique	matrix	elements).	(Right)	Plot	of	the	logarithm	(base	

10)	of	the	predicted	and	actual	three-cell	correlations.	Only	values	larger	than	0.001	are	plotted.	Note	also	

that	there	are	no	free	parameters	in	this	figure.	The	agreement	between	the	predicted	and	actual	three-

cell	correlations	is	obtained	without	any	fitting.	

	



Figure	S7.	Distribution	of	waiting	times	between	consecutive	visits	to	a	given	state	varies	between	

different	network	motifs;	related	to	Figure	4	and	STAR	Methods	section	“Potential	benefits	of	chain-

like	state	transition	networks.”	

The	dynamics	of	the	three	state	transition	networks	shown	here,	A)	Chain-like	linear	B)	Irreversible	cycle,	

and	C)	All-to-all,	were	simulated.	Every	time	a	simulated	cell	visited	the	green	state,	we	tabulated	the	

number	 of	 generations	 that	 had	 elapsed	 since	 its	most	 recent	 ancestor	 left	 that	 state.	 From	 this,	we	

computed	the	distribution	of	"waiting	times"	between	consecutive	visits	to	the	green	state	for	each	type	

of	 network	 (blue	 bar	 plot).	 As	 expected,	 the	mean	 waiting	 time	 (blue	 line)	 is	 the	 same	 for	 all	 three	

networks.	The	transition	rates	were	selected	to	ensure	that	the	flux	of	cells	into	the	green	state	and	the	

population	fractions	are	the	same	across	the	networks,	also	ensuring	identical	mean	waiting-times.	The	

distribution	of	waiting-times,	however,	differs	significantly	between	the	networks.	In	particular,	the	chain-

like	linear	network	exhibits	the	smallest	median	(red	line),	implying	that	most	cells	in	the	population	have	

visited	the	green	states	relatively	recently,	at	the	expense	of	a	minority	that	have	experienced	larger	than	

average	waiting-times.	Assuming	that	visiting	the	green	state	enhances	the	viability	of	the	cells,	this	could	

be	beneficial	for	the	culture	as	a	whole.	
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