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ABSTRACT

Motivation: Animal models are widely used in biomedical research

for reasons ranging from practical to ethical. An important issue is

whether rodent models are predictive of human biology. This has

been addressed recently in the framework of a series of challenges

designed by the systems biology verification for Industrial

Methodology for Process Verification in Research (sbv IMPROVER)

initiative. In particular, one of the sub-challenges was devoted to the

prediction of protein phosphorylation responses in human bronchial

epithelial cells, exposed to a number of different chemical stimuli,

given the responses in rat bronchial epithelial cells. Participating

teams were asked to make inter-species predictions on the basis of

available training examples, comprising transcriptomics and phospho-

proteomics data.

Results: Here, the two best performing teams present their data-

driven approaches and computational methods. In addition, post

hoc analyses of the datasets and challenge results were performed

by the participants and challenge organizers. The challenge outcome

indicates that successful prediction of protein phosphorylation status

in human based on rat phosphorylation levels is feasible. However,

within the limitations of the computational tools used, the inclusion

of gene expression data does not improve the prediction quality.

The post hoc analysis of time-specific measurements sheds light on

the signaling pathways in both species.

Availability and implementation: A detailed description of the data-

set, challenge design and outcome is available at www.sbvimprover.

com. The code used by team IGB is provided under http://github.com/

uci-igb/improver2013. Implementations of the algorithms applied by

team AMG are available at http://bhanot.biomaps.rutgers.edu/wiki/

AMG-sc2-code.zip.

Contact: meikelbiehl@gmail.com
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1 INTRODUCTION

Despite their limitations, animal models play an essential role in

biomedical research, ranging from basic science to translational

medicine, as human testing is severely limited by practical and

ethical constraints. In the context of drug development, the use-

fulness of animal models obviously hinges on the extent to which

results can be translated to human biology.
As an example, we consider here the response of bron-

chial epithelial cells to external chemical stimuli in rat and

human. On one hand, organisms of common origin should

arguably share many of the basic physiological mechanisms. On

the other hand, different species may exhibit significant

differences in the details of their cellular mechanisms such

as signaling pathways. It is, therefore, essential to study this rela-

tionship systematically with the aim to develop reliable tools

for the translation of results from animal models to human

biology.
Recently, the systems biology verification Industrial Methodology

for Process Verification in Research (sbvIMPROVER) initiative

designed and organized the second sbv IMPROVER challenge,

which was devoted to the question of species translation. In par-

ticular, sub-challenge 2 discussed in the following, concerned

the protein phosphorylation status of normal human bronchial

epithelial cells (NHBE) and normal rat bronchial epithelial cells

(NRBE) exposed to the same set of chemical stimuli.
Herein, we present and discuss our studies of computational

approaches for the prediction of stimulus-specific human protein

phosphorylation levels based on gene expression and phosphor-

ylation observed in the rat model. In section 2, we first give a

brief description of the data and challenge design. Next, the

computational approaches to the prediction task are described.

After specifying the evaluation criteria applied by the challenge

organizers, we describe methods used for the post hoc analysis of

datasets and challenge results. Section 3 presents the results in

terms of the predictions and their evaluation. In addition, re-

sults of the post hoc analysis concerning modifications of the

prediction models and findings related to the phosphorylation

kinetics are presented. We conclude with a discussion of the

main results and an outlook on potential extensions and future

studies.
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2 METHODS

Where applicable, the following is structured according to contributions

from the challenge organizers and the two best performing teams: team

AMG (Adel, Michael, Gyan) with members Bhanot, Biehl, Dayarian and

Hormoz and team IGB (Institute for Genomics and Bioinformatics) with

members Sadowski and Zeller.

2.1 Data acquisition and challenge design

The acquisition and preparation of the datasets are presented in greater

detail in Rhrissorrakrai et al. (2015), which also provides further refer-

ences. A detailed description is also available at www.sbvimprover.com.

Here we give only a brief summary.

For subset (A) of chemical stimuli, gene expression and protein phos-

phorylation data in both species were made available to the challenge

participants. Predictions of the protein phosphorylation status in human

cells were to be made during the challenge for dataset (B), which corres-

ponded to a different set of stimuli and comprised only the gene expres-

sion and phosphorylation data for rat.

Figure 1 illustrates the challenge setup and structure of the datasets.

Each panel of data labeled as ‘P’ corresponds to the phosphorylation

levels of 16 different proteins under 26 chemical stimuli in dataset (A)

and 26 different stimuli in dataset (B). Phosphorylation measurements,

using the Luminex xMap (TM) platform, were performed at 5 and 25min

after exposure to the stimuli. Repeated measurements provided two or

three replicates per stimulus and protein. In addition, five or six DME

(Dulbecco’s modified Eagle’s Medium) control measurements in absence

of any stimulus were provided.

In the following, the 16 proteins are referred to by numbers: AKT1 (1),

MP2K1 (2), CREB1 (3), MK03 (4), MK09 (5), MP2K6 (6), KS6B1 (7),

MK14K11 (8), PTN11 (9), WNK1 (10), FAK1 (11), HSPB1 (12), KS6A1

(13), GSK3B (14), IKBA (15) and TF65 (16). For the full list of 26 stimuli

in dataset (A) and 26 stimuli in dataset (B), see Rhrissorrakrai et al.

(2015) or consult www.sbvimprover.com.

Gene expression was measured 6h after exposure to the stimuli,

yielding GCRMA normalized Affymetrix (TM) microarray data in two

or three replicates. In addition, four or five replicates of DME controls

were available. All measurements corresponded to 13 841 genes for rat

and 20 110 genes for human, respectively.

The two best performing teams (AMG and IGB) submitted purely

data-driven predictions based on the available phosphorylation data

only. The specific approaches used by the two teams and the evaluation

of submitted predictions are outlined in the following subsections.

It was disclosed to the challenge participants that a protein should

be considered activated if its phosphorylation level, compared with

DME controls, was greater than a threshold value of 3 in absolute

value. The available training data displayed a strong prevalence of in-

active proteins: considering the median over replicates, the resulting panel

of 416=16� 26 rat phosphorylation levels in dataset A contained 61

(14.7%) values above threshold and 48 (11.5%) in dataset B. The avail-

able human data in set A contained 35 (8.4%) positive samples.

2.2 Team AMG: naive and Learning Vector

Quantization-based prediction

2.2.1 Processing of phosphorylation data The noise level observed

over replicates in the phosphorylation data appeared to be roughly con-

stant and of order O(1), independent of the mean phosphorylation level.

To address the issue of outliers, we decided to use the median of the three

replicate values. This effectively removed outliers because at least two of

the three replicates were close together in value for all measurements.

After exposure to the stimuli, activation might have occurred before

5min, between 5 and 25min or later. As there is no objective method

to decide which of these options is correct, we chose to combine the data

from both time points, using only the larger phosphorylation level (in

absolute value and compared with controls) for each protein–stimulus

pair. Finally, the mean level of phosphorylation across all available con-

trol data was subtracted. In the following, ratP and humP denote phos-

phorylation levels after these simple preprocessing steps.

2.2.2 Prediction methods We applied two different methods to pre-

dict human protein activation in dataset B: a baseline prediction was

obtained by simply assuming equal activation in both species, i.e. by

setting ‘human=rat’ after appropriate thresholding. In a second ap-

proach, we used a linear classifier trained on rat and human phosphor-

ylation data in set A. Eventually, both results were combined, taking into

account their prediction performance as assessed within dataset A.

2.2.3 Naive prediction A first prediction was based on the simple

hypothesis that human phosphorylation levels (humP) and rat phosphor-

ylation (ratP) should be similar under the same stimuli. Taking into ac-

count a threshold of 3.0 in absolute value for protein activation, we

obtained heuristic certainty values by means of a non-linear monotonic

transformation of the form

cnaive=
1

2
1+tanh

jratPj � 3

5

� �� �
2 ½0; 1� ð1Þ

The corresponding crisp classification can be achieved by thresholding

at cnaive=0.5, i.e. jratPj=3:

Performance measures like Receiver Operating Characteristics (ROC)

or Precision Recall (PR) (Davis and Goadrich, 2006; Fawcett 2006)

Fig. 1. Schematic illustration of the sub-challenge structure and datasets.

The objective was to predict the phosphorylation status (P) of human

phosphoproteins to stimuli subset B, shown in red, given the gene expres-

sion (GEx) and phosphorylation data for rat under the same stimuli.

Available data (blue) also comprised the measurements of phosphoryl-

ation and gene expression in rat and human under a different set of

stimuli A, which served as the training data. Human GEx data under

the set of stimuli B was unavailable (shown in gray)
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depend only on the ranking of certainties and are insensitive to the precise

choice of the monotonic non-linear function. Here, the arbitrary scaling

factor 5 in the argument of tanh was chosen to yield a reasonable spread

of values cnaive in the interval [0,1]. Measures that consider the accuracy of

crisp classification depend on the choice of a threshold. Tuning the

threshold could have, for instance, the aim to achieve a number of posi-

tive predictions that matches the occurrence of positive human samples in

the training data. We did not tune or adapt the certainty threshold for

crisp classification explicitly.

2.2.4 Learning Vector Quantization As an alternative to the naive

prediction, we applied a simple version of Learning Vector Quantization

(LVQ), specifically the so-called LVQ1 scheme (Biehl et al. 2007;

Kohonen 1990, 1997). To this end, the training dataset (A) was inter-

preted as to provide 26 feature vectors ~x
�
2 IR16, which comprise the

known rat phosphorylation levels ratP under stimuli �=1; 2; . . . ; 26.

We considered 16 classification problems separately, corresponding to

the protein-specific phosphorylation levels in human. Binary target

labels 0 or 1 were defined according to the comparison of jhumPj with

the threshold value of 3.0.

We used the simplest possible LVQ system, using only one prototype

per class, i.e. ~w0 and ~w1, which were adapted iteratively under random

sequential presentation of example data. For a given labeled feature

vector x~, the prototype ~wi with the smallest Euclidean distance from ~x

was updated according to the standard LVQ1 prescription [Biehl et al.

(2007); Kohonen (1990)]

~wi  ~wi+�Cð ~wi; ~xÞð~x � ~wiÞ: ð2Þ

Here Cð ~wi; ~xÞ=+1 if ~x belonged to class i and Cð ~wi; ~xÞ=� 1 other-

wise. Prototypes were initialized in the class conditional means of the

actual training set. Updates (2) were performed at constant learning

rate (�=0:005) over 1000 single example presentations. The procedure

yielded two prototypes ~wo; ~w1 2 IR16, which represent inactive or acti-

vated proteins, respectively. A crisp Nearest Prototype LVQ classifier

assigns a feature vector ~x to class 1 (activation) if

dð ~w1; ~xÞ � dð ~w0; ~xÞ

and to class 0 (inactive) otherwise. Here, the squared Euclidean measure

dð ~w; ~xÞ=ð ~w � ~xÞ2 was used to quantify the distance of feature vectors

and prototypes; hence, the simple system with one prototype per class

parameterizes a linear class boundary (Biehl et al., 2007). It is important

to note that a separate LVQ classifier was obtained for each of the 16

target proteins.

While probabilistic and fuzzy variants of LVQ have been suggested

in the literature, see e.g. [Schneider et al. (2010); Seo et al. (2003)], we

resorted here to the heuristic computation of a certainty similar to (1):

cLVQ=
1

2
1+tanh

dð ~wo; ~xÞ � dð ~w1; ~xÞ

200

� �� �
2 ½0; 1�: ð3Þ

Crisp classification is obtained by thresholding at cLVQ=0.5. Again, the

scaling factor was set manually to achieve a variation of certainties similar

to the naive prediction. Whenever a particular training set contained

negative examples only, an LVQ system could not be determined and

the naive prediction was used, instead.

Estimates of the expected classification performance were obtained

using a standard Leave-One-Out (L-O-O) validation procedure (Duda

et al., 2001; Hastie et al., 2009). The 26 slightly different LVQ classifiers

per protein were applied to dataset (B), inserting the corresponding

ratP values as feature vectors and obtaining predictions analogous to

Equation (3). The final LVQ predictions cLVQ 2 ½0; 1� were computed

as averages over the 26 L-O-O results.

2.2.5 Validation and combination of predictions We evaluated the

naive prediction by directly comparing the certainties cnaive obtained

from ratP in dataset A with the corresponding phosphorylation levels

humP. To this end, the latter were binarized by thresholding at

jhumPj=3. As one of the many possible criteria, we considered the

ROC (Fawcett, 2006) over the full panel of 16 � 26=416 values, which

yielded an area under the ROC curve (AUROC) of AUROCnaive � 0:83.

This value reflects a relatively high predictive power of ratP for the ob-

servation of protein activation, jhumPj43, within dataset A.

For the LVQ classifier, we computed the ROC within dataset A as

obtained from the 26 L-O-O runs (Fawcett, 2006). The corresponding

area under curve was found to be AUROCLVQ � 0:88, suggesting a

slightly better performance of LVQ as compared with the naive

prediction.

Eventually, the final prediction in terms of certainties for jhumPj43:0

in the test dataset B was obtained as the weighted combination

cAMG =
cnaive AUROCnaive � 0:5ð Þ+ cLVQ AUROCLVQ � 0:5

� �
AUROCnaive +AUROCLVQ � 1

: ð4Þ

The specific form reflects the fact that AUROC=0.5 corresponds to the

baseline for random guesses. For the prediction submitted to the chal-

lenge, we had computed protein-specific combinations. However, the cor-

responding prediction and its test set performance were virtually identical

with the results reported here. An unweighted mean of the two predic-

tions would have given similar results, because of the relatively small

difference of the AUROC.

As post hoc analysis, we also tested our results using the criteria that

were ultimately used by the challenge organizers (see Section 2.4). For the

training set (A) performance, we found the values summarized in Table 1.

These alternative criteria also suggest a comparable or slightly superior

quality of the LVQ system compared with the naive prediction.

2.3 Team IGB: neural network-based prediction

Team IGB’s pipeline consisted of two parts: an artificial neural network

(NN) trained to predict human phosphorylation status from rat data, and

a statistical analysis that aggregated evidence from the replicated

measurements.

Both phosphorylation and gene expression status was provided with the

rat data, so it was possible to use both in predicting the human phospho-

protein status. However, validation experiments indicated that the rat

gene expression data only increased overfitting during training, so these

features were removed. Thus, the submitted predictions used aNNwith 32

inputs, corresponding to the 16 protein phosphorylation levels measured

at both 5 and 25min, a single hidden layer of 1000 logistic units and 32

logistic outputs with a cross entropy loss function. The training data

comprised every possible input–target pair for each stimulus; a stimulus

with three rat measurements and three human measurements contributed

nine samples to the training set. As a preprocessing step, the log phos-

phorylation measurements were clipped to be between the values of 3 and

7, then translated and scaled to be in the range [0,1], allowing us to inter-

pret these values as the probability that a particular protein is phosphory-

lated. The same transformation was applied to the DME controls.

To avoid overfitting, the NN was trained with stochastic neurons. We

tested both the dropout learning algorithm (Baldi et al., 2013; Hinton

et al., 2012) and a variant in which Gaussian noise was added to each

Table 1. Performance of the naive prediction within dataset (A) and

L-O-O estimate of the corresponding performance of LVQ, respectively,

as evaluated according to the four measures defined in Section 2.4

prediction AUROC AUPR PCC BAC

cnaive 0.83 0.34 0.72 0.75

cLVQ 0.88 0.36 0.74 0.73
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neuron (Baldi et al. (2014)); i.e. at each forward propagation through the

network during training, a different random value ��Nð0; 0:2Þ is added

to the output of each neuron independently. The additive Gaussian noise

algorithm was used to train the final network because it performed

slightly better than the dropout algorithm on a validation set. The final

network was trained for 6000 epochs with a learning rate that started at

0.1, and decayed exponentially by 1.000004 after each batch. The mo-

mentum term increased linearly from 0.5 to 0.99 over the first 500 epochs,

then remained constant. The weights were initialized randomly from

Uð�0:01; 0:01Þ for the first layer and Uð�0:001; 0:001Þ for the second

layer. All NN training was performed using the Pylearn2 and Theano

software libraries (Bergstra et al., 2010; Goodfellow et al., 2013).

At prediction time, the NN was used to make predictions from each in-

dividual replicate. To combine these predictions, and to use the statistical

properties of the background distribution, we performed an additional

statistical analysis step to test for a significant difference in the predicted

phosphorylation of the proteins compared with the DME controls. For

each of the 32 predictions, we perform a one-tailed two-sample t-test for

equal means against the DME controls. To make a final prediction in the

range [0,1], we compute log10ð�log10ðP�valueÞ+1Þ.

2.4 Evaluation of predictions

The choice of evaluation criteria had to take the pronounced prevalence

of inactive prosphoproteins into account, to avoid artifacts. For instance,

all-negative predictions would appear competitive with non-trivial

schemes when taking only overall accuracies into account.

The precise assessment criteria were not disclosed beforehand. This

prevented participants from fine-tuning their results according to the ex-

pected evaluation process. For a more complete discussion of the evalu-

ation criteria, see also (Rhrissorrakrai et al., 2015). Participants submitted

their predictions in terms of certainty scores ranging from 0 (certainly not

activated) to 1 (certainly activated). These predictions were evaluated by

comparison with a binarized gold standard, where 1 or 0 indicated that the

phosphorylation level (median over replicates) was above or below a

threshold of 3 in absolute value, respectively. This choice corresponds

to 	3 SDs calculated across all phosphorylation values including DME

controls. Details of the preprocessing and definition of the gold standard

are also given in Rhrissorrakrai et al. (2015).

The organizers decided to consider a combination of three different

quality measures:


 AUPR: The area under the Precision Recall curve (AUPR) is ac-

cepted as an appropriate measure for biased classification problems

(Davis and Goadrich, 2006). It was obtained for the panel of 416

predictions and yielded a quantity between 0 and 1.


 PCC: The Pearson correlation coefficient (PCC) was based on the

correlation corr of certainties with the binarized gold standard and

was evaluated over the full panel of prediction and then scaled to

obtain values in [0,1]:

PCC=ð1+corrÞ=2:


 BAC: The Balanced Accuracy (BAC) takes into account the number

of true-positive (TP) and true-negative (TN) predictions separately

(Brodersen et al., 2010):

BAC= TP=P+TN=Nð Þ=2

with 0 � BAC � 1, where T and N are the total number of positive

and negative samples, respectively. Team predictions were thresh-

olded at c=0.5 for this measure.

Team submissions were assessed and ranked according to the sum

AUPR+PCC+BAC. In addition, tests for the statistical significance

of differences between team performances were performed. The AUPR

depends only on the order of the certainties c 2 ½0; 1�, whereas for the

BAC, only the comparison with the threshold 0.5 matters. However, the

Pearson correlation may depend significantly on the precise values of the

certainties, as for instance controlled by the non-linearities in the predic-

tions (1) and (3).

2.5 Post hoc analyses

The release of the gold standard after completion of the challenge made

possible further investigations. The performance measures used in the

challenge ranking were also applied to the individual predictions of

team AMG, i.e. the naive and LVQ classifiers. Similarly, predictions

based on single time point measures (at 5 and 25min, respectively)

were evaluated separately along the same lines. In addition to the chal-

lenge criteria, AUROC were determined analogously.

Several modifications of the classification scheme were considered by

team IGB, including attempts to make use of the gene expression data as

additional input features to the NN classifier.

The time point-specific data were also exploited in an analysis provided

by the challenge organizers. All pairs formed of the 52 stimuli and 16

proteins can be labeled according to Table 2, which compares the timing

of activation in human and rat according to the measurements at 5min

(early) and 25min (late). After assigning labels as specified in Table 2, a

hierarchically clustered heatmap of proteins and stimuli was generated

using the routine pheatmap in the R package (distance: ‘Euclidean’,

clustering method: ‘average’).

3 RESULTS

3.1 Test set predictions and evaluation

Figure 2 displays the naive, the LVQ based and the combined
prediction of team AMG, as well as team IGB’s prediction as
color-coded certainties for dataset B.

The performance of the final prediction with respect to the test
set data was evaluated by the challenge organizers in terms of the

three different quality measures presented above. After disclos-
ure of the sub-challenge outcome and the gold standard, we also
assessed the corresponding performance of the individual predic-

tions cnaive and cLVQ, separately, in terms of the measures
AUROC, AUPR, PCC and BAC. The outcome is summarized

in Table 3 and shows that the naive prediction showed the best
performance among all individual methods; it was only outper-
formed by the weighted combination cAMG.

3.2 Further post-challenge analysis

After completion of the challenge and disclosure of the gold
standard, additional aspects of the data could be investigated in

a post hoc analysis as summarized in the following.

Table 2. Rough representation of the activation kinetics, comparing

human and rat phosphorylation measured at 5min (early) and/or

25min (late), respectively

rat #\ hum.! Early Both Late Inactive

Early 0 0 1 2

Both 0 0 1 2

Late –1 –1 0 2

inactive –2 –2 –2 0

The values were chosen to enhance the differences in timecourse phosphorylation

between rat and human.
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3.2.1 Team IGB: influence of model details on

performance Various choices existed at each stage of IGB’s
prediction pipeline, and ultimately only a single model was

chosen for final submission. Table 4 shows various combinations
of these choices and their influence on the final performance

evaluation on the gold standard. Rough predictions for human
phosphorylation were made using (i) a NN trained on phos-

phorylation data alone (P); (ii) a NN trained on phosphorylation
and gene expression data (P+GE) or (iii) by using the rat phos-

phorylation as a prediction for that of human directly. Next, the

NN outputs were transformed using the logistic function to
spread the data away from a fixed value 0.5, the max predicted

value for DME in the training data (max DME) or not at all.
Last, we varied the method of aggregating the NN output on the

replicates, using either a t-test (standard or Bayesian) or a simple
mean over replicates.

Results suggest that performing t-tests increased performance
on the BAC performance metric, but in fact lowered perform-

ance on the other metrics. The overall performance of IGB’s
final submission could have been improved by eliminating the

standard t-test in favor of averaging the raw NN output, but not

enough to rank above the top-scoring submission from Team

AMG, which had a sum of 2.06 versus a sum of 1.93 using the

original Team IGB submission without a t-test. Additionally, the

original model used by Team IGB could have been improved if

the aggregation of time points was performed using the mean

rather than the max over both time points, as the sum of the

three scoring methods increased for predictions using the human

(P) and for rat (rat P), while BAC decreases, when a standard

t-test was performed. If the standard t-test is eliminated, the

original choice of taking the max over both time points per-

formed best. Further, a marginal gain of 0.0002 could have

been obtained in the final summation of scores by transforming

the NN output using the logistic function centered on 0.5, but

this gain is not consistent with the choice of training data used in

the NN (P, P+GE or Rat P).

3.2.1 Team AMG: time-specific naive predictions In addition to

the naive prediction described in Section 2.2, we considered

ratP-based certainties cð5Þ and cð25Þ as obtained following the

Table 4. A post-challenge comparison of Team IGB’s modeling choices,

with model combinations on the left (see text for details) and performance

metrics on the right

Method Logistic

Position

t-test Aggregate

5 and 25

AUPR Pearson BAC

P 0.5 None Max 0.4989 0.7525 0.6806

P None None Max 0.4990 0.7522 0.6806

P Max DME None Max 0.5017 0.7249 0.6657

P None Standard Mean 0.4115 0.7039 0.7436

P 0.5 None Mean 0.4607 0.7500 0.6348

P None Standard Max 0.4075 0.6778 0.7595

P 0.5 Standard Max 0.4078 0.6775 0.7595

P None Standard Min 0.3904 0.6996 0.7501

Rat P Max DME None Max 0.4090 0.7113 0.7160

P None Bayes Max 0.3131 0.6821 0.7634

Rat P 0.5 None Max 0.2864 0.7100 0.7417

Rat P None None Max 0.3006 0.7123 0.7160

Rat P Max DME Standard Max 0.3251 0.7072 0.6902

Rat P 0.5 None Mean 0.3262 0.7025 0.6889

P Max DME Standard Max 0.3799 0.6841 0.6186

Rat P None Bayes Max 0.2514 0.6592 0.7343

Rat P None Standard Mean 0.3399 0.6574 0.6288

Rat P 0.5 Standard Max 0.2804 0.6519 0.6778

Rat P None Standard Max 0.2704 0.6537 0.6842

Rat P None Standard Min 0.2995 0.6329 0.6121

P+GE 0.5 None Max 0.1292 0.5418 0.5057

P+GE None None Max 0.1292 0.5398 0.5070

P+GE 0.5 None Mean 0.1346 0.5345 0.4909

P+GE 0.5 Standard Max 0.1179 0.5384 0.5031

P+GE None Standard Max 0.1162 0.5371 0.5031

P+GE None Standard mean 0.1222 0.5325 0.4896

P+GE None Standard Min 0.1273 0.5194 0.4948

P+GE max DME None Max 0.1385 0.4924 0.4987

P+GE max DME Standard Max 0.1041 0.5218 0.4987

P+GE None Bayes Max 0.0601 0.4639 0.5044

The combination that Team IGB used for submission is highlighted in bold, along

with all performance scores that exceed the performance of the submitted predic-

tions. All combinations are ranked according to the sum of the three metrics, as was

done for the subchallenge scoring.

Fig. 2. Color-coded visualization of the predictions for jhumPj43 in

dataset B: cnaive (upper left panel), cLVQ (upper right) and the combination

cAMG of team AMG (lower left). The lower right panel displays the pre-

diction by team IGB. Proteins are numbered according to the list given in

Section 2.1

Table 3. Test set performances for the prediction of activated human

proteins, as evaluated according to four different measures

Prediction AUROC AUPR PCC BAC

cnaive 0.85 0.45 0.74 0.79

cLVQ 0.79 0.37 0.69 0.76

cAMG 0.83 0.54 0.75 0.77

cIGB 0.84 0.41 0.68 0.76
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same naive scheme, cf. Equation (1), but from the measurements

at 5 and 25min separately. The total cnaive discussed above could

be recovered as cnaive=max fcð5Þ; cð25Þg from these time-resolved

predictions. All results presented in this subsection correspond to

the test set data (B).
The naive certainties yield 31 positive predictions with

cð5Þ � 0:5, 34 cases with cð25Þ � 0:5 and 48 positive predictions

in total (cnaive � 0:5). In comparison, the number of human pro-

tein activations in the target data is 21 at 5min, 20 at 25min and

31 in total. Hence, the naive predictions tend to overestimate the

number of active proteins in the test set.
We compared the individual predictions with the thresholded

humPð5Þ and humPð25Þ values at 5 and 25min, respectively. In

addition, we considered cð5Þ and cð25Þ as separate predictions

for the binarized gold standard, which corresponds to threshold-

ing jhumPj=max fjhumPð5Þj; jhumPð25Þjg: For the time point-spe-

cific predictions analogous to Equation (1), we obtained the test

set performances summarized in Table 5. The results show that

the agreement between ratP and humP appears to be slightly

stronger for the measurements at 25min. Moreover, the naive

cð25Þ yields a test set performance similar to that of the total cnaive
already, cf. Table 3.

3.2.2 Other challenge results and meta-analysis The challenge

organizers analyzed and compared predictions provided by

13 different teams. A detailed discussion is presented in

Rhrissorrakrai et al. (2015). Arguably the most remarkable find-

ings were the following:
Among the 13 participating teams, 8 based their predictions on

phosphorylation data only. This turned out advantageous, as also

five of the six top-ranked submissions did not use the GEx data.

All submitted predictions were based on data-driven

approaches, applying a variety of computational methods includ-

ing NNs, linear discriminant analysis and support vector ma-

chines. A universally superior approach or family of algorithms

could not be identified with respect to the achieved rankings.
Ten teams submitted predictions that were significantly bet-

ter than random concerning at least two of the three applied

performance measures. However, most predictions failed to out-

perform the naive approach of equating human with rat phos-

phorylation. This simple baseline strategy would have achieved

rank 2 in the sub-challenge.
Averaging all team predictions, exploiting the potential

wisdom of the crowd, did not outperform the top-ranked teams,

but scored better than the second best performer with respect to

AUPR and PCC.

3.2.3 Phosphorylation kinetics in rat and human To detect phos-

phorylation patterns that differ in timing and activity in rat and

human, the challenge organizers looked for changes in phosphor-

ylation at the two different time points, 5min and 25min, after

the cells’ exposure to a stimulus and computed the state of phos-

phorylation of the 16 measured proteins for each of the 52 sti-

muli (training and test sets) at both time points. Figure 3 shows

that, overall, stimuli cause more activation in rat than in human

cells except for two specific phosphoproteins KS6A1 and

HSPB1. Differences between the kinetics of activation at time

points 5 and 25min are minimal. This difference could be

owing to a more homogeneous biological sample in rats than

in humans, or simply to higher sensitivity and faster signaling

of the NRBE cells compared with NHBE cells.
To test whether signaling pathways are used similarly in rat

and human, we describe in Figure 3B and C, two pathways taken

from literature and whose components are present in our dataset.

AKT1 is known to activate KS6B1/p70-S6 kinase, an mTOR

activation marker shown to phosphorylate and activate

CREB1 (Xing et al., 1996) but KS6B1/p70-S6 is destabilized

by TNF� signaling through IKBA and TF65/RelA (Gao et al.,

2009). Conversely, AKT1 has been shown to phosphorylate and

negatively regulate GSK3 � (Cantley 2002) and positively regu-

late WNK1 (Jiang et al., 2005). EGF activates AKT1 (Cantley

2002) and PTN11, the protein tyrosine phosphatase non-receptor

type 11 also known as PTP2C (Schulze et al., 2005).
In Figure 3B, we note that, besides the overall larger number

of phosphorylated proteins in rat compared with human, from

the four stimuli, i.e. EGF (Epidermal Growth Factor), TGFA

(Transforming Growth Factor alpha), EPGC (Epigallocatechin),

and PMA (Phorbol-12-Myristate-13-Acetate), that activate

CREB1 through KS6B1 in rat, only EGF does so in human.

Also all the stimuli that activate CREB1 independently of

KS6B1 in rat do not do so in human, showing a large divergence

in signaling. We observe that TNF� signaling through IKBA

and TF65/RelA occurs as expected in both human and rat, as

KS6B1 is not active in presence of TNF� probably being

degraded through the phosphorylated IKBA. Interestingly, dif-

ferences arise with IL1B and EPGC that also activate IKBA in

human, but in rat, EPGC does not activate IKBA and KS6B1 is

active. Conversely, PMA activates IKBA only in human, but in

both species, KS6B1 is active.
In Figure 3C, AKT1 activation of WNK1 is conserved as from

the four stimuli (EGF, TGFA, EPGC, INS) activating WNK1 in

human and rat, only EGF signaling is not similar in rat and

human cells. Once again more activity is shown in rat, as five

stimuli activate AKT1 and inactivate GSK3� in rat but not in

human. As shown in the wiring diagram of Figure 3c, EGF turns

on AKT1 and PTN11 and AKT1 activation represses GSK3.

However, contrary to this, for five stimuli in rat and four in

human, GSK3 is active even though its repressor AKT1 is also

active. PTN11 activation is concordant in human and rat only

for 2 of 13 stimuli (NACL and EPGC). Overall, EGF seems to

activate AKT1 in rat but PTN11 in human and GSK3 seems

active in both organisms. The EGF activation diagram is

respected for human (i.e. when AKT1 is inactive, GSK3 is

Table 5. Test set performance of naive prediction schemes cð5Þ and cð25Þ

obtained from the ratP measurements at 5 and 25min separately, com-

pared with the corresponding time-specific (top) and total (bottom) binar-

ized human protein activation

Time-specific AUROC AUPR PCC BAC

Naive prediction

cð5Þ ! humPð5Þ 0.76 0.23 0.65 0.66

cð25Þ ! humPð25Þ 0.88 0.46 0.76 0.82

cð5Þ ! humP 0.75 0.29 0.66 0.63

cð25Þ ! humP 0.82 0.45 0.75 0.77
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Fig. 3. Comparison of signaling pathways in rat and human. (A) Heatmap showing the clustering for directionality of phosphoprotein activation

(columns) after a given stimulus (rows) for the two species, showing which phosphoproteins were activated early or late in each species by the different

stimuli. Only stimuli with at least one non-zero entry according to Table 2 are shown. (B and C) Top: in orange are shown potential pathway activation

diagrams for phosphoproteins activated by RPKB6S1 (B) and AKT1 (C). Bottom: left heatmaps show the clustering of the rat phosphorylation

activation status of the phosphoproteins shown in the diagrams for all active stimuli. Right heatmaps display human phosphorylation activation

status of the phosphoproteins shown in the diagrams for stimuli using the same clustering structure obtained from the rat data to ease comparison

among species. Only stimuli where activation is present in at least one species are shown. Protein phosphorylation states are defined as inactive, active

early (active only at 5min), active at both time points (active at 5 and 25min) and active late (active only at 25min)
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active) but not for rat. However, independent of the wiring dia-
gram the activation profile of AKT1 and GSK3 in human and
rat are similar.

4 DISCUSSION

With respect to the predictions required in the sub-challenge,

results summarized in Table 3 indicate that the naive prediction
was already competitive and yielded the best prediction perform-

ance of all individual methods. On the other hand, the findings
demonstrate that the combination of different methods had the
effect of improving the test set performance with respect to some

of the criteria. In the comparison across the primary methods
shown in Table 4, the ranking of the different choices also
confirms that assuming humP � ratP yields a decent baseline

performance as compared with the NN trained on just phosphor-
ylation data.
It is also interesting to note that team AMG’s naive prediction

outperformed the LVQ method with respect to the test set B,
while LVQ appeared superior in the training set validation.
Apparently, the relatively small sample sizes do not allow for

more reliable performance estimates by means of the L-O-O
method.
The organizers of the challenge compared all the submissions,

and the details of this analysis are described in Rhrissorrakrai
et al. (2015). Like most participants of the sub-challenge, the two
top-ranked teams chose to predict protein activation in human

exclusively from the rat phosphorylation data. The immediate
reaction of the cell in terms of protein phosphorylation can be

expected to be similar. However, species-specific details in the
regulation processes may be significant along the complex path-
ways from phosphorylation to gene expression levels. The use of

gene expression data is further complicated by high dimension
compared with the relatively small number of samples. Both
teams decided to avoid this complexity, which, combined with

measurement noise and unknown thresholds for gene activation,
may contribute to significant prediction errors.
One possible strategy for the inclusion of gene expression data

in the analysis would require several steps: from rat phosphoryl-
ation levels to rat gene expression data to human gene expres-
sion to human phosphorylation levels, with the possibility of

significant and unknown systematic and stochastic errors.
Alternatively, as explored by team IGB, rat GEx data could be
used as additional input to the prediction model directly. Results

summarized in Table 4 show that, interestingly, a NN trained on
P in combination with gene expression (GEx) performs worse

than using rat P as a naive prediction for human P. This is not
unexpected, primarily because of overfitting on the numerous
GEx features using only a handful of training examples.

Additionally, no cross-validation methods were used by Team
IGB to specifically avoid overfitting, and therefore the trained
model performs well on the training data but not on the test

data, for which it performs about as poorly as random and
ranks among the worst performing submissions.
The post hoc evaluation of time-specific rat phosphorylation

values as naive predictors for human protein activation at the
corresponding time points, cf. Table 5, reveals that the agreement
is slightly better for the measurement at 25min. This could

simply reflect a more pronounced variability in the early stages

of protein activation, or that most of the activation happens
between 5 and 25min.
It is difficult to come to a general conclusion concerning the

comparison of signaling pathways and their kinetics in rat
and human. Closer inspection of the phosphorylation kinetics
revealed significant differences between rat and human with re-

spect to the activation patterns, but pathways that are activated
similarly in the two species could also be identified.
The differences in regulation of signaling pathways in these

species seem to be stimulus and pathway-dependent, but can
be identified from a well-structured training set as shown by
the challenge results.

5 CONCLUSION AND OUTLOOK

A detailed comparison and analysis of predictions submitted
by 13 different teams is provided in Rhrissorrakrai et al.

(2015). In general, the challenge results indicate that the
stimulus-dependent protein phosphorylation displays significant
correlation between rat and human, which facilitates direct inter-

species prediction. Indeed, the analyses provided by the best per-
forming teams were purely data driven and based on the rat
phosphorylation status only.

In forthcoming projects, more sophisticated classifiers and
training schemes should be exploited for the prediction. As just
one example, the application of more advanced variants of LVQ

using adaptive distance measures appears promising (Bunte
et al., 2012; Schneider et al., 2009).
Improved training schemes and careful control of overfitting

effects may allow for the beneficial inclusion of gene expression.
Similarly, low-dimensional representations of the GEx data or
the consideration of ortholog gene sets could be used. The latter

strategies have proven useful in the related sub-challenges con-
cerning intra-species predictions of phosphorylation (Dayarian
et al., 2014) and inter-species prediction of gene set activation

(Hormoz et al., 2014), respectively.
In all approaches presented here, target proteins were con-

sidered independently. Correlations or anti-correlations between

different phosphoproteins as observed in the training set could
prove useful in more sophisticated prediction techniques.
Going beyond a purely data-driven analysis and prediction by

taking into account available domain knowledge should provide
further insights into the mechanisms that control the activation
kinetics and help us better understand the differences and simi-

larities between the two species.
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