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A heat engine undergoes a cyclic operation while in equilibrium with the net result of conversion of heat into
work. Quantum effects such as superposition of states can improve an engine’s efficiency by breaking detailed
balance, but this improvement comes at a cost due to excess entropy generated from collapse of superpositions
on measurement. We quantify these competing facets for a quantum ratchet composed of an ensemble of pairs
of interacting two-level atoms. We suggest that the measurement postulate of quantum mechanics is intricately
connected to the second law of thermodynamics. More precisely, if quantum collapse is not inherently random,
then the second law of thermodynamics can be violated. Our results challenge the conventional approach of
simply quantifying quantum correlations as a thermodynamic work deficit.
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I. INTRODUCTION

Kelvin’s statement of the second law of thermodynamics
claims that “no process is possible in which the sole result is the
absorption of heat from a reservoir and its complete conversion
into work™ [1]. First written in 1849, more than a half-century
before the discovery of quantum mechanics, it is generally
regarded as one of the immutable laws of nature. Here, we
explore the implication of this statement on the laws of
quantum mechanics, in particular the measurement postulate.

According to quantum theory, on measurement a state
collapses probabilistically into an eigenstate of the measured
observable [2,3]. The objectively random outcomes from mea-
surements of a superposition of eigenstates have been proposed
as an unbiased physical source for generating random numbers
[4]. Thus far, experimental tests have found no deviation from
randomness for sequences generated using quantum collapse
[5-7]. However, despite some limited theoretical constraints
on computability of quantum measurement outcomes [8], the
inherently probabilistic nature of quantum collapse remains
a postulate; for a derivation of collapse probabilities without
appealing to Born rule, see Refs. [9,10]. We suggest a possible
connection between the inherent indeterminacy in quantum
collapse and the second law of thermodynamics by exploring
quantum protocols for converting heat to work.

A heat engine is a system that is cyclically modified while
in thermal equilibrium with the net result of conversion of
heat into mechanical work. To extend this notion into the
quantum regime, quantum analogues of various isothermal and
adiabatic steps for running the engine have been considered
[11-14]; other quantum effects such as the discrete nature of
energy states [13] and indistinguishability of particles [14]
can also modify the operations of a quantum engine. However,
more exotic quantum properties, such as quantum coherence,
at first seem impossible to achieve in a system in contact
with a thermal reservoir. Thermal equilibrium implies that the
engine is described by a canonical ensemble of orthogonal
energy eigenstates—diagonal density matrix. Nonetheless, if
some degrees of freedom of the system are neglected (traced
over), the remaining subsystem is not in general described by
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a canonical ensemble. To access exotic quantum features, the
observer operating the engine must focus on a subsystem. A
bipartite system shared between two parties is the simplest
quantum engine of interest.

In Refs. [15] and [16], it is shown that less work can
be extracted from a heat bath when a bipartite system is
shared between two parties than when one party has global
possession of the system. Thermodynamic measures such as
the amount of extractable work are used to quantify available
resources for quantum information processing, such as quan-
tum correlations. However, despite their utility in providing a
quantitative metric for nonlocal resources, these approaches do
not estimate the maximum locally extractable work correctly,
by missing a crucial ingredient: the same nonorthogonal states
that introduce added inefficiencies in the operations of a local
observer can also break detailed balance. The subsystems are
effectively out of equilibrium, and measures deduced from
equilibrium thermodynamics are not strictly valid.

Here, we quantify the thermodynamic benefits and costs of
locally manipulating a simple quantum heat engine composed
of an ensemble of interacting pairs of atoms. We estimate the
locally extractable work by accounting for the broken detailed
balance associated with the collective measurement of a sub-
system (one atom of each pair). With detailed balance broken,
the engine can rectify thermal fluctuations to extract work,
much like the “ratchet and pawl” engine used by Feynman in
his Lectures [17]. In the proposed quantum ratchet, irreversibil-
ity of quantum collapse (or decoherence) permits extraction of
net motion from thermal fluctuations of a single heat bath. We
show that the work cost due to the excess entropy generated
from the collapse of nonorthogonal states, compensates for the
gain obtained from ratcheting thermal fluctuations. Kelvin’s
statement is never violated. We use this simple construct
to demonstrate that if a sequence of collapsed measurement
outcomes is nonrandom, or algorithmically compressible, then
the second law of thermodynamics can be violated.

Since we are interested in measurements and the role of
an observer in extracting thermodynamic work, we adopt the
setup of Maxwell’s demon [18]. This demon can measure the
state of a system, for example, the position of a single gas
molecule in a chamber, and extract work from its knowledge,
for instance, by positioning a piston appropriately and
carrying out an isothermal expansion [19]. As first observed
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by Szilard [19], and later by Landauer and Bennett [20,21],
the demon does not violate Kelvin’s statement, since in
a cyclic operation the same amount of work is required
to erase the demon’s memory as is extracted. Maxwell’s
demon establishes a connection between information and
thermodynamic entropy. The flow of information is analogous
to the flow of heat in and out of a Carnot engine from thermal
reservoirs. If the reservoirs have the same temperature, the
inflow and outflow of heat are the same, and the net work
extracted is zero. Implications of a demon measuring quantum
states were considered early on by von Neumann [22], who
showed that the ability to distinguish nonorthogonal states is
equivalent to a violation of the second law.

At first sight, quantum measurements seem to introduce
further inefficiencies in the operations of the demon. Take
the example of a single spin in an external magnetic field
first discussed in Ref. [23]. The spin is initially in state | —) =
1//2(1) + |4)), where |1) (|1)) points in the same (opposite)
direction as the external field and has energy —uB (uB).
One way to extract work from such a system is to rotate the
spin to the || ) by applying a 7 /2 pulse, extracting work wB.
Alternatively, one can measure the spin along the magnetic
field direction, if the outcome is |1) the spin can be rotated
to || ) state with a w pulse to extract work 2u B. Since this
outcome occurs half the time, on average the work extracted is
B, same as before. However, the process of measurement has
generated a “waste” bit of information, which requires work
kpT In2 to erase, making the overall process less efficient.
Naively, one might expect that quantum effects in general can
only decrease efficiency by generating excess entropy from
measurements of nonorthogonal states.

Scully et al. in a pioneering paper [24] showed how work
can be extracted from a single quantum heat bath. The key idea
is to use quantum coherence to break detailed balance. Using a
three-level atomic system in a photon bath, they showed that a
properly tuned superposition of the almost-degenerate ground
states can result in destructive interference between the absorp-
tion paths. With a reduced absorption probability, the atoms
can effectively act as a higher temperature reservoir, permitting
extraction of work. Of course, the cost of generating the initial
coherence precludes the possibility of violating the second law.

Here, we combine the above seemingly contrasting views
into a consistent picture using the language of Maxwell’s
demon. Before introducing the specifics of the quantum
ratchet, we consider a general cycle for a quantum heat engine.

II. GENERIC ENGINE CYCLE

Consider the following cyclic operation for an engine
with access to a single heat bath; for similar cycles see
Refs. [11-13,25].

Step 1. The system with Hamiltonian H; is put in contact
with a thermal reservoir at temperature 7. At equilibrium
system is descried by density matrix p; = Z%e’ﬂ”‘, where
B = (kpT) ' and Z; = Tr{e H/*sT} is the partition function.

Step 2. The system is isolated from the thermal reservoir.
The Hamiltonian is adiabatically changed to H,, leaving
the occupation probability of each energy level unchanged.
The density matrix of the system after the transition is
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P = Zi pilei){e;|, where {p;} are the eigenvalues of p; and
{le;)} the energy eigenstates of H, [12]. The amount of work
performed by the system is Wy = Tr{p; H} — Tr{p; H>} [13].

Step 3. The demon extracts work from the system by
first measuring it and gaining information S(p;) = S(p1) =
—Tr{p; In p;}, where S is the von Neumann entropy. The
system is then put in contact with the thermal bath and work
is extracted from a quasistatic isothermal expansion in phase
space from the known state (measurement outcome) to one
with maximum entropy [16,20,21,25]; the final density matrix

is pp = Zize‘ﬁHz. Using the first law of thermodynamics, work

done by the system is given by
W3 = AU; = 7' Tr{pa In po} + B~ Tr{pr In 1}, (1)

where AUz = Tr{p; Hy} — Tr{p, H>} is the change in internal
energy of the system. The second term on the right-hand side
is the heat flow from the isothermal expansion, and the last
term is the work cost of erasing the information gained from
the demon’s measurement.

Step 4. Finally, to complete the cycle the Hamiltonian is
adiabatically changed back to H; with the work extracted given
by Wy = Tr{p,H,} — Tr{p, H,}, where p, has the same occu-
pation probabilities as p, but with eigenstates corresponding
to the energy levels of H;.

The net work by the system in the full cycle is

Waet = Tr{(p1 — p2)Hi} + B [S(p2) — Sl (2)

Substituting H; = —f ~1In(Z,p;) in the above expression
gives Woer = B~ (Tr{p2In p1} — Tr{p In p2}). Since S(p2) <
—Tr{pz2lnp:1} [26], for any choice of Hj, Wye < 0, which
implies that the cycle can only convert work to heat, in
agreement with Kelvin’s statement.

The demon, however, can access nonequilibrium ensembles
by observing subsystems. The broken detailed balance in the
subsystems can be exploited to enhance efficiency. However,
observing subsystems can generate excess entropy and in-
crease the work cost of erasure [16], which we demonstrate
first. Assume that there are two subsystems, A and B, with
reduced density matrices pA® = Tr¥™{p}. Step 3 above
needs to be modified to:

Step 3'. The demon measures subsystem A using a complete
projective measurement, IT4. pr,—q = Tr{,olAl'I A=q;} 15 the
probability of outcome a; from measuring subsystem A. The
demon gains information H(p{') = — _; p,, In p,,, the Shan-
non information of the measurement outcomes; in general,
H(p) = S(pi), where S(pit) = —Tr{p{ Inp{'} is the von
Neumann entropy of subsystem A.

The demon does the same with subsystem B. Information
gained from the second measurement, however, is not inde-
pendent from the first one, and is given by

S(pF (M) = Siprs=a S(o) ). 3)

B|m,, .

where p, e Tr {pi 1 A=a;}/ Pr,—a; 18 the state of B after
the measurement on A. The system is then put in contact with
the thermal bath and work extracted as before.

The net work of one cycle is
Wit = Tr{(o1 — p2) Hi}
+B7[SGe) = H(pl") = S(pf [Ta)]. @)
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Even for the optimal choice of I14, local measurement
can generate additional entropy, H(plA) + S(plB|1'[A) > S(p1),
if there are quantum correlations, for example entanglement,
present between the two subsystems [28-30]. Quantum cor-
relations exist even if the individual states making up p
are separable, p = p; ;j|A;){A;| ® |Bj)(B,|, as long as states
|A;) (|B;)) form a nonorthogonal set for subsystem A (B)
[27]. Quantum correlations are encoded in nonorthogonal
states of the subsystems or entangled states, which col-
lapse when measured locally. The excess entropy generated
from the measurement-induced collapse of these states is
given by

8 =H(pi') + S(p7 [M1a) — S(p1)- 5)

This quantity is known as quantum discord [16,28,29,31]. § is
always greater than or equal to zero.

The net work extracted from local measurements, Eq. (4),
can be naively related to that from global measurements,
Eq. (2), W), = Wy — B7'6, as argued in Refs. [15,16]. It
seems that local measurements produce a smaller net work
by an amount equal to the discord. However, Eq. (4) has
neglected a crucial ingredient: the same quantum correlations
that create discord can also break detailed balance. Measuring
subsystems, besides generating excess erasure cost, can also
enhance engine efficiency. To correctly calculate the maximum
extractable work, we need to exploit the broken detailed
balance in the engine.

III. QUANTUM RATCHET

Periodic potentials with broken parity symmetry (e.g.,
a sawtooth pattern) might seem capable of extracting net
directed motion (and thereby work) by rectifying thermal
kicks. Smoluchowski and later Feynman, using a “ratchet and
pawl” construct, showed that detailed balance precludes this
possibility [17,32]. Out of equilibrium, however, correlated
fluctuations [33], nonthermal kicks, or time-varying potentials
[34] can give rise to directed motion.

We use the inherent nonequilibrium nature of quantum
collapse to implement a quantum ratchet. But first, consider
a simple equilibrium case: an ensemble of two-level atoms in
contact with a thermal reservoir at temperate T [Fig. 1(a)];
a fraction of the atoms are thermally excited. Assume that a
pulse of light exists that only excites the atoms in the ground
state, leaving the excited atoms unaltered. After applying such
apulse, which requires work, all the atoms will be in the excited
state [Fig. 1(b)]. The demon then extracts work by rotating all
the atoms back to the ground state. Since the entropy of the
system is zero after the pulse, there is no erasure work. The net
work extracted is equal to the energy of the thermally excited
atoms, as the work extracted from the atoms initially in the
ground state is equal to the work spent applying the pulse.
This protocol “ratchets” work from thermal excitations of the
system. Of course, such a pulse does not exist, as it violates
detailed balance: absorption and emission are no longer on the
same footing. A & pulse, for instance, will also result in decay
of all the excited atoms in addition to exciting all the ground
state atoms. More generally, unitarity in quantum mechanics
requires that any coupling be Hermitian, implying that any
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FIG. 1. (Color online) Quantum ratchet. (a) An ensemble of
two-level systems in equilibrium at temperature 7. Application of
the pulse excites the atoms that were initially in the ground state,
resulting in (b). Atoms in the excited state (highlighted) are not
altered. Work is extracted by the demon rotating all the atoms to
the ground state (c). Such a pulse violates the principle of detailed
balance. However, a physical realization is possible using a collective
quantum nondemolition measurement of the entangled pairs of atoms.

transfer from the ground state to the excited state must occur
equally in the reverse direction.

Nonetheless, it is possible to implement the above ratchet
using entangled pairs of atoms as effective two-level systems.
Our engine will be an ensemble of N >> 1 pairs of interacting
atoms (A and B) each in a box of size L. The internal state
of the atoms is represented as a spin-1/2 system with energy
gap w. The two atoms interact (XY interaction) with a coupling
constant that is a function of their separation distance.

The Hamiltonian for each subsystem (pair of atoms) is given
by

H = 0S5 + oS; + Mr)(SiSg + Sy Sp), (6)
where S =07 /2 and Sj[ =87+ iS';, with Uf’y’z the Pauli
matrix acting on atom j = A, B.

The coupling is only turned on when the separation distance
of the atoms is below a certain cutoff:

A, if
0, if

Ir| < ro

AMr) = (7

| >ry

The engine is operated as follows (for a detailed analysis
see the Appendix):

Step 1. Initially, the box size L is smaller than the cutoff
ro. Each pair is equilibrated via exchange of photons with
an incoherent thermal radiation field. Above Hamiltonian
has four energy eigenstates: two separable states, |gg) and
lee), where |e) and |g) denote the single-atom excited and
ground states (§° = +1/2); two entangled energy eigenstates,
|+) = 1/4/2(leg) £ |ge)), which have an energy separation of
2).. The equilibrium occurrence probabilities of the entangled
states are denoted as p.

Step 2. The radiation field that thermalized the internal state
of each atom-pair is turned off, ensuring that the probability of
occurrence of each internal state is kept constant. The trans-
lational degrees of freedom of the atoms, however, can equi-
librate via collisions with the walls of the box. The volumes
of the boxes are doubled. Atom-pairs in the separable states
have no energetic preference for their separation distance. The
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FIG. 2. (Color online) Net work extracted. (Left) Probability
of finding the pair of atoms in the uncoupled state as a function
of coupling parameter A, for, from right to left, 8 =1, 2, and
10, respectively; w = 1. The inset shows the ratio of the effective
temperature of each atom to the actual temperature as a function of
inverse temperature, for, from bottom to top, > = 0.2, 0.3, and 0.4,
respectively. (Right) Net work extracted from the cycle for the same
color-coded values of A as the inset. The three curves on the top
correspond to § = 0 and imply a violation of Kelvin’s statement.

energy of the entangled state |—), however, increases by A
if the separation distance of the atoms exceeds the cutoff
(uncoupling the pair); thermal fluctuations can provide this
energy. Conversely, state |[4) has a lower energy in the un-
coupled state. The equilibrium probability of finding internal
states |+) in the uncoupled state is p= = 1/(1 + ¢¥F*) (Fig. 2).

Step 3. A quantum nondemolition measurement is per-
formed on the collective spin of all the A atoms, S'/i =
1/V/N/2 ZZNZI S% ;> where the i summation runs over all
the boxes. The measurement outcome does not reveal which
A atoms are excited but only their total number [35]. The
information obtained is logarithmic in the system size N and
has a negligible erasure cost. The measurement collapses all
the entangled states, since a superposition of an A atom in
the excited and ground states cannot correspond to a known
total number of excited A atoms. (Nondemolition means that
the measurement Hamiltonian commutes with the single-atom
Hamiltonian (S%), leaving the A-atom states unaltered; see
the Appendix for an implementation using Faraday-rotation).
The average energy of a coupled atom-pair increases to
their uncoupled state after the collapse. This is manifested
in the higher effective temperature of the individual atoms
(Fig. 2, inset); work is required for the collective measurement.
However, as in the simple example above, this work will be
retrieved in the final step. For the pairs thermally excited to
the uncoupled state, the collapse requires no work. Restoring
these pairs to the initial state will effectively convert thermal
excitations in the translational motion of the atoms to useful
work; the cycle operates like a quantum ratchet. Unlike
the simple m pulse of the above example, the collective
measurement inherently breaks detailed balance. Decoherence
or collapse of the entangled states is an irreversible process.
The measurement increases the energy of the coupled pairs to
that of uncoupled pairs, but not the reverse.

Step 4. The volume of the boxes are restored to their initial
value. The demon measures the internal state of each pair of
atoms, reducing their entropy to zero. An isothermal reversible
expansion is performed to the initial state. As discussed above,
the probabilistic collapse of the entangled states, by the local
(one atom of each pair) collective measurement, results in an
increase in entropy by §. Therefore, the erasure cost will exceed
the work extracted during the isothermal expansion by g7!6.
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The ratchet provides useful work by effectively lowering the
work cost of the collective measurement in the previous step.
Thermally uncoupled |—) states save A in measurement work,
whereas, uncoupled |4) states require additional work A. On
average, the net work extracted in the cycle from each atom
pair is

Wi = Mp-p, — p+pi)— B8, (8)

where the first term on the right-hand side is the work obtained
from ratcheting thermal fluctuations in the translational motion
of the atoms, and the second term is the erasure cost of the
excess entropy generated from the random collapse of the
entangled states.

Measurement-induced collapse of quantum states permits
ratcheting of work from thermal fluctuations by breaking
detailed balance. Above, this has increased the net extracted
work compared to the protocol in Eq. (4), where W, =
—pB~'8 with local measurements but without a ratchet.

The erasure cost of § precludes the possibility of violating
the second law of thermodynamics. In the above cycle,
W, <0, for all values of coupling A and temperature T
(Fig. 2). Unlike Eq. (4), local measurements of subsystems
do not just introduce added inefficiencies through &, but also
enhance efficiency by breaking detailed balance. Nonrandom
quantum collapse will have thermodynamical implications that
we explore below.

IV. NONRANDOM COLLAPSE

Each cycle of our engine produces a classical measurement
outcome stored by the demon. Quantum theory tells us the oc-
currence probability of a particular outcome p; [3,9,10]. Each
outcome is assumed to be uncorrelated from the preceding
ones; the indeterminacy of each measurement is an inherent
property of the system. The demon stores a sequence of its
measurement outcomes, s. In the limit N — oo outcomes, this
sequence can be reversibly compressed into a sequence of size
NH({pi}), where H is the Shannon entropy of outcome prob-
abilities p;. The compressed sequence must be irreversibly
erased to complete the cyclic requirement of the engine.

Of course, the demon does not need to know about
quantum theory. It simply compiles a large sequence of
measurement outcomes and then searches for a method to
maximally compress this sequence to minimize the work
for erasure. In general, the compressed sequence s* can be
thought of as a program that, when executed on a universal
computer, yields s. The size of this program |s*| is called the
Kolmogorov complexity of s, K (s) [36—38], and corresponds
to the minimum number of bits that need to be irreversibly
erased, setting the minimum erasure work [39].

The average Kolmogorov complexity of all possible se-
quences of outcomes is well-approximated by the entropy of
the sequences, (K (s)); & N'H({p;}); almost all sequences are
random strings and algorithmically incompressible [36-38].
However, an infinitesimal fraction of the sequences have con-
cise descriptions that are asymptotically negligible compared
to the size of the sequence, limy_ , K(s)/N — 0. Such
strings, like the binary digits of m, might appear random
but have concise algorithmic descriptions. K(s) is not a
computable function [36-38]; it is impossible to distinguish
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between random strings and those that just “look” random.
An observer making a finite number of measurements and
performing a finite number of statistical tests can never be sure
if the outcomes are truly random; for experimental searches for
nonrandomness in quantum collapses see Refs. [5-7]. Below,
we show that an algorithmically compressible or nonrandom
sequence of quantum measurement outcomes will result in a
violation of the second law of thermodynamics.

Assume that quantum measurement outcomes are deter-
ministic, that is the observer can algorithmically compute the
expected outcome of a collapse based on its observations.
Consider a bipartite ensemble with quantum correlations
described by density matrix %;p;|A;)(A;| ® |B;){B;|. The
joint-states |A;) ® |B;) form an orthogonal set; however, for
subsystem A(B), {|A;)}({| B;)}) are not necessarily orthogonal.
The entropy of this system is H({p;}). Local measurements
of subsystem A are assumed to be deterministic, such that
the subset of nonorthogonal states |A;<) that are expected to
collapse with outcome k are known a priori. The probability
of measuring outcome k is py = X, pi- A subsequent
measurement of B fully identifies the initial state. The entropy
of the outcomes from local measurement of A followed
by B is given by H({pi}) + Sk prH({ piex}) = H({p;}). The
equality follows from additivity of Shannon entropy; entropy
is independent of how the process is divided into parts. With
deterministic collapse, no excess entropy is generated by
measuring subsystems, § = 0.

For the quantum ratchet considered above, the excess
entropy is generated from collapse of entangled states when
measured locally. A demon that can deterministically predict
future collapses from the sequence of preceding outcomes
can sufficiently compress the measured outcomes to ensure
6 = 0. From Eq. (8), the engine operated by a demon that
does not generate excess entropy from collapsing superposi-
tions, will yield W, > 0, in violation of Kelvin’s statement
(Fig. 2).

Quantum effects, such as nonorthogonal states, are on
one hand beneficial for operating a heat engine since they
can potentially break detailed balance; on the other hand,
measuring such states results in the generation of excess
entropy and added inefficiencies. As we have shown, the
second law of thermodynamics precludes the possibility of
nonrandom outcomes from measurements of nonorthogonal
quantum states. In general, any system with quantum cor-
relations (even without entanglement) has the potential to
break detailed balance. However, quantifying the benefits
may be more difficult than the above construct. Besides
an exercise in connecting fundamental laws, the result that
thermodynamic work deficit is not strictly equal to discord
might prove useful in identifying the important ingredients for
quantum information processing. A quantum ratchet based on
decoherence is also of practical interest when generation of
excess entropy is tolerable.
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APPENDIX: QUANTUM RATCHET

We present a detailed analysis of the quantum ratchet engine
proposed in the main text of the paper.

1. The subsystems

The working substance of the engine is composed of N > 1
subsystems, each composed of two interacting atoms (A and
B) in a box of size L. Each atom is a two-level system
with energy gap iiw. We set i = 1 for the remainder of the
discussion. The internal state of each atom is represented as a
spin-1/2 system. The two atoms interact (XY interaction) with
a coupling constant that depends on their separation distance.

The Hamiltonian for each subsystem is given by,

H = 0S5 + 0S5 + Mr)(S,S; + 5,59, (A1)

where S% =07/2 and §7 = S} £iS}, with o7 "* the Pauli
matrix acting on atom j = A,B

The coupling is only turned on when the separation distance
of the atoms is below a cutoff,
A, if
0, if

Ir| < rop

A(r) = { (A2)

x| > ro

There is no kinetic energy term in the Hamiltonian; the “gas”
of two atoms has no pressure. Therefore, there is no energetic
cost (gain) in compressing (expanding) the gas by changing
the dimensions of the box.

2. Step 1: Initializing the engine

Initially, the box size is smaller than the interaction range of
the atoms, Ly < rg. The Hamiltonian then has no r dependence
and the coupling is always on.

H; = 0S8} + wS; + M85 S5 + S,S5). (A3)

The atoms are allowed to interact with a thermal radiation
field at temperature 7 to reach equilibrium. Each subsystem
is described by the density matrix,

Pine = € PHi JTe{e PHiY, (A4)

where B = (kzT)~! is the inverse temperature. From here on,
we choose our units such that k = 1. The above density matrix
describes the internal degrees of freedom of the atomic pair.

3. Step 2: Thermalizing translational degrees of freedom

The thermal radiation is removed, fixing the internal de-
grees of freedom of the atoms. This means that the occupation
probability of the energy levels of Hamiltonian [Eq. (A3)]—
or equivalently the eigenvalues of pj,—are constant. The
spacing between the energy levels, however, can change as
the Hamiltonian changes as a function of the interatomic
separation distance. The translational degrees of freedom of
the atoms equilibrate through collisions with the walls of the
box.

The box size is now expanded to L ~ 2173r,. As noted, no
energy is extracted from this expansion. We assume that the
volume where the coupling is nonzero, |r| < ry, is equal to
the volume where coupling is zero, |r| > ry, so that there is
no entropic preference for coupling or uncoupling; there is,
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however, an energetic preference. The probability of finding
the atomic pair coupled (r| < rp) is given by,

e—BH:
pPi = <'e_ﬂ[~1i —|—€_16H0 >p. ’ (AS)

where H; is the interacting Hamiltonian given above, and
Hj is the noninteracting Hamiltonian (H; with A = 0). The
expectation value is taken over the internal state density matrix,
Eq. (A4). Equivalently, the probability of finding the atomic
pair in an uncoupled state is

e PHo
Po = <m>p. - (A6)

The average energy of the uncoupled state is higher than that
of the coupled state. It is, therefore, less likely to find the atoms
with separation distance larger than the interaction cutoff, |r| >
ro. Thermal fluctuations, i.e., from the collision of atoms with
the walls of the box, however, result in transient excitations,
and a nonzero probability of observing the uncoupled state
at equilibrium. We can think of each box of two atoms as
a two-level subsystem, with the excited state corresponding
to uncoupled atoms, and the ground state corresponding to
coupled atoms. A demon can extract useful work from this
system by measuring the state of the atoms and extracting the
excess energy of the uncoupled state. However, the demon’s
observation comes at the cost of increasing the entropy of the
demon’s memory by an amount equal to the Shannon entropy
of p; and p,. The energetic cost of erasing this memory for
cyclic operation exceeds the work obtained from coupling of
uncoupled atoms.

Next, we will show that it is possible to extract useful
work from thermally excited states of the atomic pairs without
measuring the state of each subsystem (box) individually. This
is done by collapsing the entangled states of the two atoms by
a collective measurement of all the subsystems. Of course, as
we will show, the second law is not violated since collapse of
the superpositions generates excess entropy.

4. Step 3: Collective measurement of the atoms

The Hamiltonian in Eq. (A3) has the following eigen-
states: [g)4 ® 1g)5 = |gg), |=) = 1/+/2(leg) — |ge)), |+) =
1/\/§(|eg) + |ge)), and |ee); |g) and |e) correspond to the
ground state and excited state, respectively, of an individual
atom, S* = £1/2. The corresponding eigenvalues are, respec-
tively, —w, —A, A, and w. With the coupling turned off, A = 0,
the energy eigenstates are separable: |gg), |ge), |eg), and |ee),
with energy eigenvalues —w, 0, 0, w, respectively.

The probability of finding internal state |+) in the coupled
(interacting) external state is given by p;r =1/(1+ ).
Similarly, the probability of finding internal state |—) in the
coupled external state is given by p; = 1/(1 + e #*). The
probability of finding these states uncoupled is, respectively,
pi=1- p;’ and p; =1— p;. |-) has a lower energy in
the coupled state, and is, therefore, more likely to be found in
this state at equilibrium. |4), however, energetically prefers
the uncoupled state and has a higher equilibrium probability
of occurring in such a state.
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One way to decouple the pair of atoms is to measure the spin
of one of the atoms, for instance atom A. Such a measurement
collapses the entangled states |£) onto one of the separable
states |eg) or |ge). The act of measurement and collapse of
state |—) will cost energy X; alternatively, collapse of |+)
results in a gain of the same amount of energy.

We first present a simple model of a collective spin
measurement to convey the concept, later a more realistic
physical implementation using Faraday rotation interaction of
the atoms with linearly polarized light is discussed.

Simple model. A collective quantum nondemolition mea-
surement of the atomic internal states (spins) will determine the
total number of A atoms in the excited state; however, it will be
impossible to tell which particular boxes contained the excited
A atoms. The measurement is “nondemolition” in the sense
that the Hamiltonian of the probe-interaction commutes with
the single-particle Hamiltonian (S5) (see below). Repeated
collective measurements will produce the same outcome, for
uncoupled pairs, or sufficiently short interval between the
measurements. Equivalently, the state of the atoms (|g) or
|e)) is unaltered by the measurement; the excited atoms can be
used in the next step to extract work.

Let’s demonstrate this first for a simpler case where the
initial state is a pure state of all subsystems in state |+). The
collective measurement will collapse the entangled states in
the subsystems; the resulting state is a superposition of all
possible permutations of the excited A atoms over all boxes.

100, ® [4)1 ® ... ® [+)v = Y /Pulm),

N
1
® Z —‘gfef,...,e{?gﬁ,...,
VG

1,02,0esim

e;‘”gﬁ, ... ,gf\‘,ef,):|, (A7)

where p,, is the probability of observing m excited atoms. The
subscript p denotes the probe state and 1... N is the index
of the subsystems. The second summation on the right-hand
side is over all permutations of assigning m excited A atoms
to N boxes. After the measurement all the subsystems are in
eigenstates of H.

For the more complicated scenario, where the initial state
of each subsystem is the mixed state pj,, the postmeasurement
state of the system is also a mixed state. However, as in the
simpler case, all the entangled states in the subsystems collapse
from the collective measurement. A subsystem cannot remain
in a superposition of an A atom in the excited and ground states
when the total number of excited A atoms is known (entangled
with the state of the probe). Tracing out the B-atom states
results in a state after the measurement that is a statistical
ensemble of all possible permutations of the excited atoms
over the boxes,

10)(0, ® o1 ® ... ® piy = Y _ pulm)(ml,,
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where p* = Tr8{pin} is the density matrix of atom A in box
i. The summation in the second term on the right-hand side is
over all permutations of assigning m excitations to N boxes;
each index runs from 1 to N and no two indices can take on
the same value.

1
Pit iy = Tav 810+ 1€y o 1€y oo, 8N)
()
(815 iy s€ips o s8N A (A9)

p;! is always diagonal. Denote the probability of finding atom
A'in the excited state as p;' and in the ground state as p; = 1 —

pf. The probe before the measurement is in state |0) ,. After
interacting with the system, the probe is in state |m), (where
m denotes the number of excitations) with probability p,,.
The number of excited atoms is not affected by the interaction
with the probe since it is a nondemolition measurement. A
measurement of the probe’s state with the outcome m’ implies
that the A atoms are described by the density matrix,

N

1
Z m|g1, e s@ily e s€ e 8N)
m’

01202,y

(81 -+ sCiys v sy ... (A10)

8N4

The atomic pairs in each box are no longer entangled in the
postmeasurement state above. Observing the state of the A
atoms has collapsed the entangled states |£). The resulting
delocalized excitations imply that now all the boxes are entan-
gled; this entanglement, however, does not affect the energy
of the system. There is an energetic cost to the collapse of |+)
states for the atomic pairs with nonzero coupling. On average,
the work required for conducting this measurement is given by

W, = NM(p_p; — p+p;). (A11)

where p is the equilibrium probability of the entangled inter-
nal states |£) [Eq. (A4)]. pijE is the probability of finding state
|&) in the coupled external state, as defined above. W, is not a
work cost in the cycle. The energy put into the system for col-
lapsing the energetically favorable entangled states will be re-
trieved in the next step, when work is extracted from the atoms.
The actual cost of the measurement is in the information
gained, which incurs an erasure penalty. It is easy to show
that the information penalty from the probe’s measurement is
negligible. First, since we have knowledge of the initial density
matrix of the atoms pj,; (having prepared it in the first step), we
can easily calculate the average number of excited A atoms,
Np2. The only information gained from the measurement is
fluctuations around this average due to a finite N. Number of
excitations is given by a binomial distribution with variance
2= Np2 p?. The information gained per box from the
measurement is the entropy of the binomial distribution:
H, = L10g2(27te<7) ~ log(N)/N. (A12)
For N > 1, the information gained from the finite-size
fluctuations is negligible. The collective measurement seems
to have given us everything for free. The collapse of the
entangled states effectively decoupled all the atoms, raising
all the subsystems to their “excited” state. The work cost of
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the measurement, corresponding to raising the coupled pairs to
the uncoupled excited state, is retrieved in the next step when
the demon measures the atoms individually. The nonlocal
entanglement between all the boxes due to delocalization of
the excitations will also collapse when each atom is measured
individually; there is no energetic cost to causing this collapse.
Moreover, the entropic cost of the information gained by
the collective measurement is negligible for large system
sizes. Naively, it might seem that this procedure allows us
to extract useful work from thermal fluctuations that resulted
in uncoupled atoms. However, as we will show, the collapse
of the entangled states, encoding the quantum correlations
between the two atoms in each box, results in generation of
excess entropy. When the demon measures the state of all the
individual atoms to extract work, it has to pay an erasure
cost for this excess entropy, which exceeds the gain from
“ratcheting” of thermal fluctuations.

Faraday rotation interaction. A possible implementation of
the quantum nondemolition collective measurement discussed
above is using Faraday rotation interactions of the atoms with
a linearly polarized light pulse. Define the collective spin
operator of A atoms as 85 = 1//NJ/2Y_, S ,, where the i
summation runs over all boxes. The y and z comi)onents of the
normalized Stokes operator of a pulse of probe light of duration
t is defined as L, = (i+/2Np)™! fot(aia_ —dla)dT, L, =
(V2Np)™! fot(aiaJr —a'a_)dT, where N; is the average
number of photons in the pulse, and a is the annihilation
operator of oy circularly polarized light mode [40]. The
Hamiltonian for the Faraday rotation interaction is given by
Hyg = oL, S5, for some real constant & [41]. The interaction
does not modify the z component of the collective spin,
[ HEr, S “1=0, and therefore constitutes a quantum nondemo-
lition measurement. The y component of the Stokes operator
evolves under this interaction to L — L + « 8%, for some
constant k. A measurement of L, w111 pI‘O_]eCt the system into
an eigenstate of the collective spin operator S "> in analogy to
the fixed excitation-number |m’) state of the probe discussed
above. For an example of experimental implementation of this
scheme, see Ref. [42].

5. Step 4: Demon measures the subsystems

In this step, the demon measures the internal state (spin) of
every atom and extracts useful work. Following the collective
measurement, the size of each box is reduced to that of Step 1,
L < ry, ensuring that two atoms are always interacting. With
no entangled pairs, there is no energetic cost for reducing
the size of the subsystems. This ensures that the demon’s
measurement of the atoms contains no information on whether
the atoms were in a coupled or uncoupled state.

The demon measures the state of each atom in every
subsystem. Let’s assume without loss of generality that atom
A is measured first in box 1. As discussed in the main
text, the demon gains information H(,o ). The demon then
measures the state of atom B. Because of correlations, the
outcomes of the two measurements are not independent.
Information gained from the measurement of B is given

Blm,. .
by S(,olBll'[A) = X Pra=a; S(P, |n’), where I, is a complete
projective measurement on A, corresponding to a measurement
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in the |g) and |e) basis of the A atom; pr,—, = Tr{plAl'[Aza,.}
is the probability of outcome a; from measuring subsystem A;
and ,olBlﬂ“" = Tr*{p1 Ay, }/ Pr,—a is the state of B after the
measurement on A. As noted in the main text, the total entropy
of the demon’s measurement is greater than the entropy of the
initial state p;,; due to the random collapse of the entangled
states by the collective measurement. The excess entropy is
given by

8 =H(pi') + S(p7 [Ma) = S(pino)-

This is the entropic price of having collapsed the superposi-
tions in each subsystem.

From the single-atom density matrices, individual atoms
appear to be at an effectively higher temperature,

Teofr = —w/ln(l/pzA,'zB —

where p4® = Trp 4{pin}, and the subscript 2,2 refers to the
corresponding element (|e)(e|) of the single-atom density
matrix. For the above system, T > 7. The atoms are
effectively hotter after the collapse of the entangled states.
The effective higher temperature is due to the work put into
the system during the collective measurement that uncoupled
the atomic pairs.

(A13)

1), (Al4)

6. Net work extracted

The demon extracts work from each box by using the
following procedure: (1) The demon measures the state of each
atomic pair, reducing the subsystem’s entropy to zero. (2) The
subsystem is placed in contact with the thermal reservoir and
allowed to isothermally and reversibly expand to its initial
state, which is characterized by pine; work is extracted during
this expansion. (3) The demon erases the information obtained
from measuring each subsystem.

The net work extracted from the collective measurement
and the actions of the demon can be calculated using the first
law of thermodynamics,

AU =W+ 0, (A15)

where AU is the change in internal energy, W the net work
performed by the system, and Q the net heat flow, per box.
Let’s analyze each term of the above equation separately.
The change in the internal energy is zero for the atom pairs that
where in the coupled state (ground state of the effective two-
level system of each atomic pair) at the time of the collective
measurement, since the initial and final states are the same.
However, the story is different for the thermally excited states.
Thermally uncoupled |—) states are energetically beneficial,
since they require no work expenditure during the collective
measurement, but result in a reduction of the internal energy
by A after the reversible expansion to the initial coupled state.
Similarly, uncoupled |+) states require no work during the
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collective measurement. However, they increase the internal
energy by A when restored to the initial coupled state.

The average net change in the internal energy of a subsystem
in a cycle is given by

AU = Mp_p, — p+P)). (A16)

where p¥ is the probability of finding internal state |+) in the
uncoupled external state (see above). py is the equilibrium
probability of internal state |+) deduced from density matrix
Pint [EQ. (A4)]. The change in the internal energy corresponds
exactly to the energy “ratcheted” from thermal kicks in the
system. In the limit of very small coupling, A — 0, AU ~ A%
The second law of thermodynamics precludes conversion of
this energy into useful work by completing a cycle. Excess
entropy generated from the measurement-induced collapse of
the nonorthogonal states compensates the work potential of
the ratchet.

The last term in Eq. (A15) is the net heat outflow
(to be consistent with our sign convention) per subsys-
tem. Heat flow into the system during the isothermal
expansion following the demon’s measurement is given
by

Qin < TS(Pim)»

where S denotes the von Neumann entropy. The inequality
becomes an equality when the isothermal expansion occurs
reversibly and quasistatically. Any irreversibility in the ex-
pansion implies entropy generation without the corresponding
heat flow, which in turn reduces the amount of extracted work.

The heat flow out of the system is set by the erasure work:

Qout = T'S(pin) + T3, (A18)

where 6 [Eq. (A13)] is the excess entropy generated from the
probabilistic collapse of the entangled states induced by the
collective measurement.

Putting everything together, the net work performed by the
system must satisfy

W < AMp_p, — pspD) + TS(oin) — T S(0int) — T.
(A19)

(A17)

With the assumption that the isothermal expansion is
reversible,

chc = )\(P—P; - P+P0+) —T34. (A20)

Without loss of generality, the energy units are selected
such that w = 1. Subsequently, Wy, < 0, for all values of A
and T'; in accordance with the second law of thermodynamics,
ensuring that no net work is extracted from the cycle. As
discussed in the main text, if the outcomes of the collapse of
the entangled states were nonrandom, then § = 0, allowing the
demon to extract work from each cycle, in direct violation of
Kelvin’s statement.
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