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Abstract6

Detecting oscillations in time series remains a challenging problem even after decades of research.7

In chronobiology, rhythms in time series (for instance gene expression, eclosion, egg-laying and8

feeding) datasets tend to be low amplitude, display large variations amongst replicates, and9

often exhibit varying peak-to-peak distances (non-stationarity). Most currently available rhythm10

detection methods are not specifically designed to handle such datasets. Here we introduce a new11

method, ODeGP (Oscillation Detection using Gaussian Processes), which combines Gaussian12

Process (GP) regression with Bayesian inference to provide a flexible approach to the problem.13

Besides naturally incorporating measurement errors and non-uniformly sampled data, ODeGP14

uses a recently developed kernel to improve detection of non-stationary waveforms. An additional15

advantage is that by using Bayes factors instead of p-values, ODeGP models both the null (non-16

rhythmic) and the alternative (rhythmic) hypotheses. Using a variety of synthetic datasets we17

first demonstrate that ODeGP almost always outperforms eight commonly used methods in18

detecting stationary as well as non-stationary oscillations. Next, on analyzing existing qPCR19

datasets that exhibit low amplitude and noisy oscillations, we demonstrate that our method20

is more sensitive compared to the existing methods at detecting weak oscillations. Finally, we21

generate new qPCR time-series datasets on pluripotent mouse embryonic stem cells, which are22

expected to exhibit no oscillations of the core circadian clock genes. Surprisingly, we discover23

using ODeGP that increasing cell density can result in the rapid generation of oscillations in24

the Bmal1 gene, thus highlighting our method’s ability to discover unexpected patterns. In its25

current implementation, ODeGP (available as an R package) is meant only for analyzing single26

or a few time-trajectories, not genome-wide datasets.27

Introduction28

From the rapid ultradian oscillations of p53, NF-κB, Hes7, and the embryonic segmentation29

clock, to the slower seasonal flowering patterns in plants - oscillations in biological systems are30

ubiquitous across many length and time scales [1, 2]. These patterns, where repeatedly occurring31

peaks can be observed in the time series of interest, are often noisy, exhibit low amplitudes (peak-32

to-trough distance), and are non-stationary (peak-to-peak distance varies with time). Classic33
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examples of such noisy oscillations can be observed in circadian clock gene expression [3, 4],34

feeding, eclosion and egg-laying rhythms [5, 6, 7]. This makes it hard to distinguish rhythmic35

patterns from noise, necessitating the development of quantitative approaches to accurately in-36

fer the existence of oscillations, and subsequently extract parameters such as time period and37

amplitude [8]. Developing principled approaches to detecting oscillations is also important in38

differential rhythmicity analyses, where genes can lose or gain rhythmicity after perturbations39

[9, 10, 11]. Finally, biological oscillators are often coupled, and investigating the nature and con-40

sequences of coupling often depends on the ability to carefully measure and detect the individual41

oscillations in the first place [12, 13, 14].42

Over the last few decades numerous methods have been developed to address the oscillation de-43

tection problem arising from experiments which generate, for example, qPCR, RNA-seq, feeding,44

eclosion and egg-laying time series datasets. Existing non-parametric methods used for oscilla-45

tion detection include JTK Cycle [15] and RAIN [16]. eJTK [17] is a more recently developed46

algorithm that improves on JTK Cycle by including non-sinusoidal reference waveforms. Meta-47

Cycle [18], an R package developed to identify oscillations, integrates the results of JTK Cycle,48

the Lomb Scargle Periodogram [19] (a parametric method) and ARSER [20] (a parametric49

method using autoregressive models, which cannot work on unevenly sampled data). Another50

existing R package for oscillation detection is DiscoRhythm [21], which builds on MetaCycle by51

additionally using the Cosinor [22] method (also parametric). Among the non-parametric meth-52

ods, RAIN requires that the period to test for (or a range of periods) be specified beforehand53

when trying to identify oscillations. Similarly, JTK Cycle and MetaCycle also require informa-54

tion about the expected oscillation time period to be provided as inputs to the algorithm. More55

recently, neural network based approaches have been used for classifying oscillatory versus non-56

oscillatory datasets [23], but these do not allow learning of the full waveform, besides requiring57

a lot of training data to perform well. Finally, wavelet-based techniques [24, 25] can extract58

time-dependent phase and periods from temporal datasets, but are not designed to specifically59

detect oscillations or handle replicate data. More details and comparisons of a variety of oscilla-60

tion detection algorithms can be found elsewhere - [8] provides a comprehensive review of earlier61

techniques while comparisons of more recent methods can be found in [26, 27, 28, 29, 30].62
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While these methods have improved over time and have become increasingly powerful, a number63

of challenges in oscillation detection are yet to be overcome [30] - (1) data is often available only64

at non-evenly spaced time points, which can make oscillation detection difficult, particularly with65

Fourier Transform based methods, (2) large error-bars at each time point from replicates are66

often not easy to incorporate into existing methods, (3) biological oscillations tend to be non-67

stationary (peak-to-peak distance varies over time), which parametric models cannot handle68

well due to difficulty in defining functional forms for such data, and finally (4) most current69

methods rely on calculating a p-value to classify a dataset as rhythmic versus non-rhythmic (for70

an exception, see [31]), but a major issue with p-value based approaches is that they model only71

the null, but not the alternative hypothesis [30, 32, 33, 34]. Existing methods often overcome72

one or few of these challenges, but no single method exists that addresses all these problems in73

a comprehensive manner.74

To solve the above four challenges in a unified framework, here we develop ODeGP (Oscillation75

Detection using Gaussian Processes), a new approach to the oscillation detection problem com-76

bining Gaussian Process (GP) regression [35] with Bayesian model selection. Conceptually,77

the non-parametric nature of GPs allows ODeGP to flexibly model both stationary and non-78

stationary datasets, while the Bayesian model selection approach using Bayes factors allows us79

to model both the null as well as alternate hypotheses, unlike p-value based methods. In partic-80

ular, we use a recently developed non-stationary kernel that allows us to model non-stationary81

datasets [36, 37], improving the accuracy of oscillation detection over many of the popular ex-82

isting methods such as eJTK and MetaCycle. GPs also overcome issues related to unevenly83

spaced time-series data and can naturally incorporate error bars generated by replicates. Addi-84

tionally, ODeGP provides a simple Bonferroni-type multiple hypothesis correction [38], though85

this approach currently limits its use to settings where only one or a few trajectories are to be86

analyzed, not genome-wide datasets. Finally, a major additional advantage of GPs is that they87

provide the ability to quantify uncertainty predictions at any time point, including test points88

where no experimental data has been collected [35].89

We extensively compare the performance of ODeGP with eight other existing methods on both90

simulated and experimental datasets and demonstrate that it is consistently better and more91
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sensitive at identifying oscillations. We also find that the Bayes factor usually has a large92

separation between oscillatory and non-oscillatory experimental datasets, suggesting that it is a93

good metric for the classification problem. Finally, to test the usefulness of ODeGP in learning94

patterns in new datasets, we generate time-series circadian clock gene expression profiles using95

mouse embryonic stem cells (mESCs). Intriguingly, we find that oscillations of Bmal1 can be96

induced within a few days in mESCs by increasing cell density and that these oscillations get97

suppressed with the addition of MEK/ERK and GSK3b inhibitors. This interesting result adds98

to previous observations that while pluripotent mESCs exhibit no clock gene oscillations, retinoic99

acid mediated differentiation can induce oscillations after about two weeks [39, 40]. Our results100

indicate that increasing cell density might mimic the effects of directed differentiation, but with101

faster kinetics of emergence of circadian gene oscillations.102

Methods103

ODeGP - Gaussian Process regression for oscillation detection104

A brief mathematical introduction to the theory of Gaussian Processes (GPs) is provided in105

SI Section 3. Here we provide the basic outline of our oscillation detection algorithm using106

GPs. The time points at which gene expression data is collected using qPCR are specified as107

a list X. If the data for d distinct replicates is available for the times given in X, these d lists108

Y1, Y2, . . . , Yd are taken as input. Otherwise, if the averaged qPCR data Y is available along109

with the corresponding error bar values S for each time point, Y and S are taken as input. In110

either case, the qPCR data may be collected at irregular intervals or have missing points. In the111

former case, Y and S are calculated from Y1, Y2, . . . , Yd before proceeding. Y is then detrended112

via linear regression to remove long-term trends, and zero-centred to simplify the computations113

involved in performing Gaussian process regression.114

The entries of the covariance matrix ΣXX are determined by a positive semi-definite kernel115

function K. ODeGP uses two different kernel functions, KD and KNS. The diagonal ker-116

nel KD(x, x
′) = ϵ2 · δxx′ is used to represent non-oscillatory functions, where δ is the Kro-117

necker delta. This kernel encodes the prior belief that there is no correlation between the118
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values of the data at different time points, thus all the non-diagonal entries of the covari-119

ance matrix are 0. To represent oscillatory functions, the non-stationary kernel KNS(x, x
′) =120

w(x)w(x′)kgibbs(x, x
′) cos(2π(xµ(x) − x′µ(x′)) + ϵ2 · δxx′ is used, where kgibbs is the Gibbs ker-121

nel. The hyperparameters w and µ, along with l (which is part of the expression of kgibbs), are122

functions of x. Thus the covariance matrix will depend on x and is not solely a function of123

|x− x′|.124

The error bar values S are incorporated into the covariance matrices generated by these kernels125

as follows: for si ∈ S, s2i is added to the ith diagonal entry of the matrix. These terms model126

local noise, which arise from technical variations amongst the replicates. Global noise, which127

includes other sources of variations beyond technical noise, is modeled by a hyperparameter ϵ128

such that ϵ2 is added to all diagonal entries of the covariance matrix. This ϵ2 term is included in129

the expressions of KD and KNS, allowing us to learn the best value of ϵ along with the remaining130

hyperparameters.131

Optimal hyperparameters for the non-stationary and diagonal kernels are obtained through132

maximization of the marginal log-likelihoods (MLL) (see Equation 17 in the SI), to obtain the133

optimal MLL∗
NS and MLL∗

D respectively. The kernel that represents a better prior belief for134

the given dataset is identified through Bayesian model selection. The Bayes factor is defined135

as the ratio of the marginal likelihood of two competing hypotheses. Here, it is calculated as136

k = exp(MLL∗
NS − MLL∗

D) and compared to a decided threshold T . If k ≥ T , the dataset is137

declared to be oscillatory, otherwise not. A discussion on the choice of T is provided in the138

Discussion section.139

Finally, while ODeGP has been designed primarily to detect rhythms in single time-series trajec-140

tories, it also provides a Bonferroni-type multiple-hypothesis correction term if multiple trajec-141

tories from the same dataset are intended to be analyzed simultaneously. A single multiplicative142

correction term to the Bayes Factors (which acts as the prior odds) is calculated based on the143

number of trajectories to be analyzed: Prior Odds = (1− Π
1/k
0 )/(Π

1/k
0 ), where k is the number144

of trajectories and Π0 is by default taken to be 0.5. The prior odds, multiplied to each of the145

Bayes Factors of the different trajectories analyzed, provides the posterior odds that can be used146

to judge rhythmicity in the multiple hypothesis setting. More details are provided in Section 4147
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of the SI. The use of this Bonferroni-type correction factor currently limits ODeGP to the anal-148

ysis of one or few trajectories only, as opposed to genome-wide datasets, since the Bonferroni149

correction is very stringent and greatly increases false negatives when many comparisons are150

performed.151

Cell lines and culture conditions152

A passage 12 (p12) mESC line (E14TG2a.4) was expanded under conditions expected to maintain153

pluripotency, and all cells used for the experimental data reported here were within 10 additional154

passages. The p12 cells were thawed and expanded on 0.1% gelatin-coated, cell-culture treated 10155

cm plastic dishes. GTES ES cell media (GMEM, 15% FBS, Glutamax, Sodium Pyruvate, Non-156

Essential Amino Acids, BME, and LIF) was used to propagate the cells in pluripotent conditions.157

Cells were passaged at approximately 70% confluency to avoid crowding-induced differentiation.158

For all experiments that required thawing out new vials, the cells were always initially maintained159

in cell-culture treated plastic dishes coated with 0.1% gelatin, and then transferred to various160

other conditions, such as glass dishes with fibronectin or laminin coating.161

qPCR experiments - data collection protocol and error analysis162

For the qPCR experiments, cells were collected in Trizol, total RNA was extracted and converted163

to cDNA, and finally, qPCR was performed using the SYBR Green dye. Each time point164

(beginning from time 0, corresponding to immediately after Dex synchronization) corresponds165

to cells obtained from an independent well of a 24-well plate. To avoid any artifacts in cell166

synchronization due to differences in cell density at different times of cell collection, we devised167

a protocol to ensure an approximately equal number of cells collected for every time point:168

instead of synchronizing all the samples at one time point and collecting cells at different time169

points, we synchronized cells at different times and Trizol collected the cells at a single time.170

Details of the protocol, seeding densities, and various substrate conditions for the samples are171

provided in SI Section 1. The error analysis is explained in SI Section 2.172
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Results173

ODeGP - an oscillation detection algorithm based on Gaussian Pro-174

cesses175

We developed a new method for detecting oscillations, ODeGP (Oscillation Detection using176

Gaussian Processes), combining Gaussian Process (GP) regression and Bayesian inference. A177

brief intuition of how GP regression works is provided in Figure 1A and an outline of the178

ODeGP pipeline is displayed in Figure 1B. In brief, GP regression is a non-parametric approach179

to learning non-linear trends in data, where instead of specifying a function and learning its180

optimal parameters (parametric regression), the functional form itself is learnt by specifying a181

prior over functions [35]. Placing a prior over functions is achieved by the use of a multivariate182

Gaussian (Figure 1A, left), whose covariance matrix is determined by a kernel that prioritizes183

certain classes of functions based on prior expectations of smoothness and characteristic length-184

scales associated with the problem of interest. After data is obtained, the instantiations of the185

prior that best describe the data are obtained via the posterior (Figure 1A, right), which can186

be described via the posterior mean and variance. More details can be found in Methods and in187

the SI Sections 3 and 4.188

ODeGP detects oscillations in time-series data by initializing two GP models or kernels (one189

encoding a belief of the data containing oscillations, and the other encoding a belief of oscillations190

being absent), performing GP regression on the data with each kernel separately by optimizing191

their respective marginal log-likelihoods (MLLs), and finally comparing these likelihoods to192

determine the model that better describes the data. Optimization of the MLL automatically193

incorporates the trade-off between maximizing the fitting of the data while minimizing model194

complexity. This complexity is represented by the determinant of the covariance matrix in the195

expression for the MLL (Equation 17 in the SI). This term can penalize an increase in the196

number of kernel hyperparameters used to compute the covariance matrix, and thus prevent197

overfitting of the data. A more detailed analysis of this is presented in SI Section 6, Figure S1198

and Table S7. Finally, the possibility of performing corrections for multiple hypothesis testing199

is also provided - for details, see Methods and SI Section 4.200
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Figure 1: An overview of the workflow of ODeGP. (A) An intuitive schematic of Gaussian
Process (GP) regression, where a GP is an indexed collection of random variables with a multi-
variate normal joint probability density. Left: A GP prior defining a distribution over functions
(instantiations of the functions are shown in green lines; mean and confidence intervals are in
red and blue respectively). Middle: Observed data. Combining the observed data and the GP
prior allows the construction of the data likelihood. Right: Posterior distribution generated
after Bayesian inference, which models the given data closely. Green lines are instantiations of
the posterior, red and blue lines are the posterior mean and standard deviation respectively.
(B) The workflow of ODeGP. The pre-processing stage involves formatting and normalizing the
data. Next, two separate regressions are performed with the diagonal and non-stationary kernels
respectively. The optimized marginal log likelihood (MLL) of the data is found for each case.
These MLL values are then used to compute the Bayes factor for model selection. This Bayes
factor is the final output metric used to determine whether the data is oscillatory or not.

All datasets: 3 replicates, 48 hr duration, 3 hr spacing,
Noise level: low/high, Fraction of missing data: 0/0.5

Simulated
non-oscillatory
datasets

Gaussian noise (Random sample from N (0, σ) at each timepoint)

Simulated
oscillatory
datasets

Stationary symmetric data (com-
binations of sine waves)

Stationary asymmetric data
(sawtooth waves)

Non-stationary symmetric data
(continuously decreasing or ran-
domly varying time period)

Non-stationary asymmetric
data (randomly varying
time period)

Table 1: Categories of simulated data used for comparing the performance of existing oscillation-
detection methods with ODeGP.
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We generated a wide variety of simulated datasets where the ground truth (oscillatory or non-201

oscillatory) is known. These datasets are summarized in Table 1, and comparisons of various202

methods on these datasets are discussed in the next sections (see also SI Section 5). To mimic203

experimental qPCR data, all simulated waves were generated as sets of 3 replicates, with a204

total duration of 48 hours and an interval of 3 hours between consecutive observations. Two205

relative levels of noise (low and high), along with two different fractions of missing data (none206

and half), were used to create further variation among the datasets. Finally, three different ways207

of generating non-stationary data were tested (details in Section 5 of the SI).208

Detecting oscillations in simulated stationary datasets209

We first tested ODeGP on simulated stationary data. Datasets consisting of both non-oscillatory210

and stationary oscillatory waves were generated, and the ability of each method to distinguish211

the two was evaluated through the construction of receiver operating characteristic (ROC)212

curves.213

Non-oscillatory waves were simulated by randomly sampling from a standard normal distribution214

with standard deviation σ at each timepoint in consideration: f(t) = N (0, σ), as shown in Figure215

2A. The three replicates are shown with red, blue and green lines. Symmetric stationary waves,216

as in Figure 2B, were generated by the addition of two sine waves: f(t) = A1sin(2πt/τ1) +217

A2sin(2πt/τ2) +N (0, σ).218

The performance of various methods in terms of correctly identifying the presence of oscillations219

in symmetric stationary waves was evaluated by generating ROC curves on a collection of 500220

oscillatory and 500 non-oscillatory waves. These ROC curves for data corresponding to the221

waves in Figure 2A and 2B are shown in Figure 2C. ODeGP performs the best on this set of222

1000 waves, with an AUC value of 0.838. AUC values for all other datasets are reported in SI223

Section 5.224

Similarly, performance on asymmetric stationary oscillatory waves was evaluated by generat-225

ing ROC curves on a collection of 500 non-oscillatory waves (as shown in figure 2D) and 500226

asymmetric stationary oscillatory waves. The latter were generated using the functional form227

of sawtooth waves: f(t) = A · { t
τ
} +N (0, σ), where {} represents the fractional part function.228
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Figure 2: Detecting oscillations in simulated stationary datasets. All waves shown are sets of
three replicates. (A) Simulated non-oscillatory data with σ = 0.1 and half the points missing.
(B) Simulated symmetric stationary data with A1 = A2 = 3, τ1 = 18, τ2 = 26, σ = 0.1 and
half the points missing. (C) ROC curves for all methods considered on the dataset consisting
of waves generated like (A) and (B). Numbers in brackets denote AUC values. (D) Simulated
non-oscillatory data with σ = 1 and no points missing. (E) Simulated asymmetric stationary
data with A = 5, τ = 18 and σ = 1. (F) ROC curves for all methods considered on the dataset
consisting of waves generated like (D) and (E). Grey shaded areas represent regions with missing
data. LSP - Lomb Scargle Periodogram; SM - spectral mixture kernel.

Figure 2E shows a wave generated as such. RAIN performs the best on this set of 1000 waves229

as seen in Figure 2F with an AUC value of 0.87, while the non-stationary kernel has a relatively230

poorer AUC value of 0.68.231

The relative performance of the methods tested on all stationary datasets generated is sum-232

marised in Table 2 (all AUC values are provided in SI Section 5). ODeGP is consistently among233

the best 3 performing methods in all symmetric stationary datasets considered. Cosinor and234

eJTK, which are among the best 3 methods the second-most times, also fall among the worst235

3 methods a significant number of times. In asymmetric stationary datasets, RAIN is among236

the best 3 methods the most consistently, whereas ODeGP here has a relatively average per-237

formance (neither being many times among the best 3 nor many among the worst 3). RAIN’s238
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better performance compared with our method on these datasets is expected because it sepa-239

rately groups the rising and falling parts of the waves for comparison, boosting its ability to240

identify asymmetric waveforms [16].241

Stationary Datasets

Method
Symmetric Datasets (Total: 9) Asymmetric Datasets (Total: 8)

Times among
best 3 methods

Times among
worst 3 methods

Times among
best 3 methods

Times among
worst 3 methods

Cosinor 5 3 3 4
eJTK 5 4 4 4
GPrank 0 6 0 5
JTK Cycle 1 0 3 0
LSP 0 6 1 4
MetaCycle 1 0 4 0
ODeGP 9 0 2 1
SM Kernel 2 5 0 6
RAIN 4 3 7 0

Table 2: Comparison of the number of times each method tested appears among the best
and worst performing 3 methods, in all stationary datasets considered. LSP - Lomb Scargle
Periodogram; SM - spectral mixture.

Detecting oscillations in simulated non-stationary datasets242

Since experimental time-series qPCR data tends to be non-stationary (peak-to-peak distance243

varies with time), we next tested the ability of each method to distinguish non-stationary oscil-244

latory waves from non-oscillatory waves.245

Symmetric non-stationary oscillatory waves with a monotonically decreasing time period, as246

shown in Figure 3B, were generated using the functional form f(t) = A · sin( 2πt
1+|t−τ |) +N (0, σ),247

where τ ≥ 48. The ROC curves in Figure 3C indicate that ODeGP performs the best on a248

dataset consisting of 500 non-oscillatory waves generated like in Figure 3A and 500 symmetric249

non-stationary oscillatory waves generated like in Figure 3B, with an AUC value of 0.814.250

Since there can be many ways of generating non-stationary data, an additional approach to251

generating time-varying periodicities in a single wave was explored. Symmetric oscillatory waves252

were generated with a randomly varying time period instead of a monotonically decreasing one,253

as follows: at the start of each new oscillation, a time period τ is sampled from N (µ, σ). If the254

total time elapsed up to the start of this new oscillation is ϕ, then f(t) = A·sin(2π(t−ϕ)
τ

)+N (0, σ)255
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Figure 3: Detecting oscillations in simulated non-stationary datasets. All waves shown are sets
of three replicates. (A) Simulated non-oscillatory data with σ = 0.1 and half the points missing.
(B) Simulated symmetric non-stationary data with a monotonically decreasing time period, with
A = 5, τ = 72, σ = 0.1 and half the points missing. (C) ROC curves for all methods tested on
the dataset consisting of waves generated like (A) and (B). (D) Simulated non-oscillatory data
with σ = 0.5 and half the points missing. (E) Simulated symmetric non-stationary data with
a randomly varying time period, with A = 1.5, µ = 24, σ = 1.33, σ = 0.5, and half the points
missing. (F) ROC curves for all methods tested on the dataset consisting of waves generated
like (D) and (E). (G) Simulated non-oscillatory data with σ = 0.1 and no points missing. (H)
Simulated asymmetric non-stationary data with A = 5, τ1 = 12, τ2 = 30, and σ = 0.1. (I) ROC
curves for all methods tested on the dataset consisting of waves generated like (G) and (H). Grey
shaded areas represent regions with missing data. Numbers in brackets in panels (C), (F) and
(I) correspond to AUC values. LSP - Lomb Scargle Periodogram; SM - spectral mixture kernel.

for ϕ ≤ t < ϕ+ τ . Figure 3E shows a wave generated in this way. Figure 3F demonstrates that256

cosinor is the best performing method on the dataset consisting of 500 non-oscillatory waves257

generated like in Figure 3D and 500 symmetric non-stationary oscillatory waves generated like258

in Figure 3E. While ODeGP has a poorer AUC value of 0.871 compared to 0.965 for Cosinor259
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and 0.937 for eJTK, it still remains within the top three performing methods.260

Asymmetric non-stationary oscillatory waves (like shown in Figure 3H) were generated using261

a similar principle, but with a sawtooth waveform instead of a sine waveform. At the start of262

each new oscillation, a time period τ is sampled from U(τ1, τ2). If the total time elapsed up to263

the start of this new oscillation is ϕ, then f(t) = A · { t−ϕ
τ
} +N (0, σ) for ϕ ≤ t < ϕ + τ , where264

{} represents the fractional part function. RAIN can be seen as the best performing method in265

Figure 3I for the dataset consisting of 500 non-oscillatory waves generated like in Figure 3G and266

500 asymmetric non-stationary oscillatory waves generated like in Figure 3H. ODeGP however267

remains among the top three methods here as well.268

Non-stationary Datasets

Method
Symmetric Datasets (Total: 15) Asymmetric Datasets (Total: 12)

Times among
best 3 methods

Times among
worst 3 methods

Times among
best 3 methods

Times among
worst 3 methods

Cosinor 9 2 4 5
eJTK 7 4 4 6
GPrank 2 4 0 6
JTK Cycle 4 2 8 0
LSP 0 14 0 8
MetaCycle 2 6 5 1
ODeGP 15 0 5 0
SM Kernel 4 7 0 10
RAIN 2 6 10 0

Table 3: Comparison of the number of times each method tested appears among the best and
worst performing 3 methods, in all non-stationary datasets considered. LSP - Lomb Scargle
Periodogram; SM - spectral mixture

A comparison of the performance of the methods tested across all simulated non-stationary269

datasets is shown in Table 3 (AUC values from all datasets are provided in SI Section 5).270

ODeGP is the best performer for symmetric non-stationary datasets, being among the top 3271

methods (in terms of AUC values) for all 15 datasets tested. In the non-stationary case as272

well, RAIN again emerges as the best method for asymmetric datasets. ODeGP shows a slight273

improvement in its relative performance on non-stationary datasets compared with stationary274

asymmetric datasets, being among the best 3 methods for a larger fraction of the datasets, and275

also never falling among the worst 3 methods.276
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ODeGP provides increased sensitivity at distinguishing oscillatory vs277

non-oscillatory patterns in noisy qPCR datasets278

After analyzing simulated datasets, we next evaluated ODeGP’s ability to distinguish oscillatory279

and non-oscillatory patterns in experimental datasets and benchmarked its performance against280

existing methods. We started with a published dataset on primary mouse marrow stromal281

cells, where the expression levels of a number of circadian clock genes were measured over282

48 hours using qPCR [4]. The cells were either treated with Dexamethasone (Dex) which is283

expected to synchronize or stimulate clock gene expression oscillations, or with vehicle (DMSO)284

where oscillations are not expected. Three independent experiments were done at each time285

point, thereby providing error bars for the expression levels as well. This dataset, therefore,286

represented a good test case for applying our rhythm detection method, since the ground truth287

is known.288

The results from our analysis of the Rev-ERBβ and Per1 genes are shown in Figure 4 (other289

genes are shown in Figure S2, SI Section 6). Raw data for Rev-ERBβ, which exhibited large290

amplitude oscillations, are shown in Figure 4A and 4B along with the GP posteriors (mean and291

standard deviation) generated using the non-stationary kernel. Besides an AUC of its ROC curve292

being close to one, an additional characteristic of a good binary classifier is its ability to produce293

an output metric that is well-separated for the two classes in consideration - in our case, non-294

oscillatory and oscillatory. Applying ODeGP on the vehicle treated data (Figure 4A) produces295

a Bayes factor of 16.50, whereas it produces a Bayes factor of 50133.83 on the synchronized data296

in Figure 4B, a separation of more than three orders of magnitude. The significant separation297

between these two values shows that ODeGP is able to make a clear distinction between the298

non-oscillatory (or weakly oscillatory; see more in the Discussion section) and oscillatory qPCR299

data. The same trend is observed in the other genes we analyzed (Figure S2), where there is at300

least an order of magnitude increase in the Bayes Factor, usually even more, when the data is301

oscillatory.302

The appropriateness of the non-stationary kernel for the classification problem is also highlighted303

by the narrower confidence intervals of the GP posterior in Figure 4B compared to those in Figure304

4A, which indicates that the non-stationary model is a less complex model for the oscillatory data305
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Figure 4: Application of ODeGP on Rev-ERBβ and Per1 expression data [4] demonstrates the
sensitivity of ODeGP at distinguishing oscillatory from non-oscillatory data. (A) The relative
gene expression of Rev-ERBβ when treated with DMSO, measured at 4-hour intervals over a
48-hour duration, is shown by the black points with green error bars indicating an average
taken over 3 biological replicates. Defining a GP prior using the non-stationary kernel and
performing GP regression on this data produces the posterior distribution shown (mean in red,
standard deviation in blue). (B) Relative gene expression of Rev-ERBβ when treated with Dex,
representing an oscillatory dataset, is shown by the black points with green error bars. The GP
posterior of the non-stationary kernel applied to this data is shown with the posterior mean and
standard deviation in red, and blue respectively. (C) Relative gene expression of Per1, when
treated with Dex, is shown by the black points with green error bars. This dataset represents
ground-truth oscillatory data, but with smaller amplitude oscillations as compared to (B). The
GP posterior of the non-stationary kernel applied to this data is shown with the posterior mean
and standard deviation in red, and blue respectively. ODeGP classifies this as oscillatory with
much more confidence than other existing methods (see main text and Table 4). (D) Points
from the raw data in (B) were removed one by one in a random order, and all methods were
applied to the resulting downsampled data at each step. The variation of the resulting Bayes
factor (bounds) with increasing number of missing points is shown for each method. The thick
blue line represents the ODeGP Bayes factor. (E) Analysis similar to panel (D) but for the raw
data in panel (A).

15

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.03.21.533651doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.21.533651
http://creativecommons.org/licenses/by-nc/4.0/


than for the non-oscillatory data. Similar separations of Bayes factors and narrower confidence306

intervals were observed when applying ODeGP on the corresponding data for the Per2 and307

Npas2 genes as well (Fig. S2).308

We next asked if ODeGP is more sensitive at detecting oscillations compared to other existing309

methods. To evaluate this, we analyzed Per1 data from the same paper [4], which visibly310

exhibited lower amplitude oscillations with larger error bars (Figure 4C). To compare the p (or Q)311

values generated by other methods against the Bayes factor produced by ODeGP, we converted312

the p-values to Bayes factor bounds [33] (Table 4). The Bayes factor bound represents an upper313

bound on Bayes factors corresponding to a given p-value, under very general assumptions on314

the alternative hypothesis [33]. As is clear from Table 4, the only methods besides ODeGP that315

correctly classified the data as rhythmic, were eJTK, MetaCycle and RAIN (p-values less than316

0.05). However, the Bayes factor generated by ODeGP was much larger compared to the upper317

bound values of eJTK, Metacycle or RAIN, demonstrating that ODeGP correctly classified the318

oscillations with much more confidence. Indeed, if recent guidelines for rejecting the null based319

on p-values less than 0.005 ([33]; see Discussion section) were to be used, ODeGP would be the320

only method to correctly classify this dataset as oscillatory. The data’s oscillatory trend was321

also captured well in ODeGP’s non-stationary kernel posterior shown in Figure 4C.322

Method Metric type Metric value Bayes factor (bound)

Cosinor Q-value 0.08537 1.7512
eJTK p-value 0.03577 3.0879
GPrank log of Bayes factor -6.7185e-05 0.9999
JTK Cycle p-value 0.12445 1.4185
LSP p-value 0.43067 1.0140
MetaCycle p-value 0.04496 2.6376
ODeGP Bayes factor 304.8628 304.8628
SM Kernel Bayes factor 1.2632 1.2632
RAIN p-value 0.00617 11.7191

Table 4: Comparison of output metrics of all methods tested on the low-amplitude Per1 os-
cillation data shown in Figure 4C. p-values/Q-values were converted to corresponding Bayes
factor bound [33] values where applicable to allow comparison with the Bayes factor returned
by ODeGP. While eJTK, MetaCycle and RAIN are the only other methods that correctly clas-
sify the dataset as oscillatory (based on a p-value cutoff of 0.05), the large difference between
ODeGP’s Bayes factor and the upper bounds generated by these methods suggest that ODeGP
is more sensitive at detecting oscillations.

To more systematically test ODeGP’s sensitivity of detecting oscillations against existing meth-323
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ods, we compared the Bayes factor generated by ODeGP with the Bayes factor bound values324

produced by the other methods across an increasingly down-sampled dataset. The raw data325

for Rev-ERBβ in Dex-treated cells (Figure 4B), which showed large amplitude oscillations, was326

considered as a starting point. Points were then removed from this dataset one by one in a327

random order, and at each step, all methods were applied to the sub-sampled data. Figure 4D328

demonstrates the rapid decrease in the Bayes factor and Bayes factor bounds with increasing329

missing points. At zero points missing all methods perform well (i.e. produce large Bayes factor330

bound values), though ODeGP and MetaCycle are distinctly better. As the number of miss-331

ing points increases, the ODeGP Bayes factor (blue thick line in Figure 4D) most consistently332

maintains a larger value compared to the Bayes factor bounds obtained from other methods.333

ODeGP thus performs better at identifying the data as oscillatory at an extent of missing points334

that causes other methods to fail. We also performed a similar downsampling analysis for the335

weakly oscillatory dataset in Figure 4A, the results of which are shown in Figure 4E. On com-336

paring Figures 4D and E, it is evident that for most points on the x-axis, the strong versus weak337

oscillation Bayes Factors are best separated for ODeGP.338

Cell-density dependent rapid emergence of oscillations in mouse em-339

bryonic stem cells340

Finally, we tested ODeGP’s ability to quantify oscillatory behaviour in new qPCR datasets, that341

could enable novel biological discoveries. For this purpose, we used early passage pluripotent342

mouse embryonic stem cells (mESCs). Previous work has demonstrated that pluripotent stem343

cells do not exhibit oscillations of the core circadian clock genes, even though the genes are344

expressed in these cells [39, 40]. We first confirmed these well-established results by culturing345

mESCs on a variety of substrates in the presence of LIF where pluripotency is expected to be346

maintained (gelatin on plastic, fibronectin on glass and laminin on glass; details in the SI Section347

1). We synchronized cells with Dex and collected the cells over a period of 24 hours at intervals of348

3 hours. Consistent with the previous literature [39, 40], application of our algorithm confirmed349

that there were no oscillations in any of the tested conditions, since the Bayes factors were in350

the range 2-8 (Figure 5A). As we had observed in the last section, in known cases where there351
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are no oscillations, the Bayes factor tends to be of the order of 10 while the presence of real352

oscillations pushes up the Bayes factor by one or two orders of magnitude.353

Figure 5: Cell-density dependent rapid emergence of oscillations in mESCs. GP posteriors of
the non-stationary kernel (mean in red, standard deviation in blue) for (A) Per2 gene expression
from low-density samples 1,2,3 and 4 (see detailed descriptions in the SI), (B) Bmal1 and Per2
expression for high-density sample 5, and (C) Bmal1 and Per2 expression for high-density (but
2i treated) sample 6. In all plots, black circles represent the mean qPCR measurement from
three technical replicates.

We next asked if increasing the cell density could lead to the generation of oscillations of circa-354

dian clock gene expression. Previous work has demonstrated that about two weeks of Retinoic355

Acid (RA) induced differentiation can induce oscillations in mESCs [39, 40], but to the best of356

our knowledge, the kinetics of oscillation development upon cell density increase has not been357

explored in this cell type. Since higher cell density can potentially cause some amount of differ-358

entiation in stem cells [41], we explored the consequences of doubling the number of cells in our359

culture dish before Trizol extraction and gene expression quantification. We also extended the360

time over which cells were collected from 24 to 36 hours, to allow for better detection of potential361

oscillations. Interestingly, though the higher cell density was maintained for only about 3-4 days362

(see SI Section 1 for details), we saw clear signs of oscillation in Bmal1 (Bayes factor of 2729)363

and weak oscillations in Per2 (Bayes factor of 19), as can be seen in Figure 5B. This was in364

contrast to the earlier studies using RA, where oscillations emerged only after two weeks [39].365
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To check whether cell differentiation could potentially have played a role in generation of these366

oscillations, we added the dual inhibitors of MEK/ERK and GSK3b (commonly called 2i) to an367

otherwise identical experimental set up with the higher cell density. 2i has been shown to differ-368

entially kill cells with low Nanog expression levels, which are prone to undergoing differentiation369

[42]. This time we found much lower Bayes factors for both Bmal1 as well as Per2 - 12.4 and370

0.5 respectively (Figure 5C), clearly indicating that the oscillations are no longer present. These371

results suggest that increasing cell density might accelerate the development of oscillations of372

the core clock genes via some degree of differentiation, though the kinetics seem to be faster than373

that of RA induced differentiation. It is interesting to note that in some cases it is impossible374

to visually discern whether or not an oscillation is present (for example in Figure 5A). These375

examples serve to highlight the importance of a quantitative and methodical approach to the376

oscillation detection problem.377

Discussion378

Detecting biological oscillations from time-series datasets remains a challenging task even af-379

ter decades of research. Here we developed an oscillation detection method based on Gaussian380

Process (GP) regression for learning noisy patterns, combined with Bayesian model selection to381

distinguish between oscillatory and non-oscillatory datasets. Our method, ODeGP, is designed382

particularly to model non-stationarity in oscillatory data using the non-stationary kernels intro-383

duced recently [36, 37], thereby setting it apart from the few previous GP-based approaches to384

oscillation detection. Furthermore, the combination of GPs and Bayesian inference has a number385

of general advantages over existing methods: (1) the non-parametric nature of GPs allows for386

better learning of noisy, non-stationary and irregularly spaced patterns, (2) technical replicates387

can easily be incorporated via diagonal terms in the covariance matrix, (3) the learned function388

and error estimates are naturally generated via analytical expressions of the posterior mean and389

variance and (4) issues associated with p-values are circumvented by the Bayes factor, which ex-390

plicitly addresses the likelihood of the observed data under both (oscillatory and non-oscillatory)391

hypotheses, instead of just the null [32]. Additionally, we also provide a Bonferroni-like multiple392

hypothesis correction within the Bayesian setting that ODeGP uses [38].393
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We demonstrated the improved performance of ODeGP compared to eight existing methods394

using both artificial (simulated) as well as experimental datasets. On the 44 simulated datasets,395

we used ROC curves and the AUC metric to make the comparisons. Overall, ODeGP worked396

significantly better (most number of times amongst the top 3 performing methods) than all other397

methods tested, both for non-stationary as well as stationary symmetric datasets (Tables 2 and398

3). As expected however, RAIN consistently outperformed all other methods when the data was399

asymmetric. Importantly, even when ODeGP did not come out on top for particular datasets, it400

was still consistently good, as it almost never ranked amongst the 3 worst performing methods.401

This was in stark comparison to eJTK and Cosinor for example, which often performed very402

well, but also frequently performed very poorly (Tables 2 and 3). In the case of experimental403

data where the ground truth is known, we compared the performance of all the methods on404

low-amplitude oscillations of the Per1 gene. While most methods incorrectly classified the data405

as arrhythmic, only ODeGP, eJTK and MetaCycle managed to detect the oscillations (Table406

4). However, on calculating the upper bounds of the Bayes factors corresponding to eJTK407

and MetaCycle’s p-values, we found that these bounds were about two orders of magnitude408

less than the Bayes Factor generated by ODeGP, thus providing significantly less confidence409

in the rhythmicity classification. Furthermore, starting from a strongly oscillatory dataset and410

subsampling the data points, we demonstrated that ODeGP consistently produced higher Bayes411

factors than other methods. In summary, analysis of both simulated as well as experimental412

datasets suggests that ODeGP is a more sensitive and reliable oscillation detector in comparison413

to the existing methods tested here.414

Finally, we tested ODeGP’s ability to provide new biological insights in qPCR data on circadian415

clock genes from pluripotent mESCs. Embryonic stem cells from both mouse [39] and human416

[43] are known to be deficient in the circadian clock oscillations, even though the genes are417

expressed in these cells. On directed differentiation using Retinoic Acid, oscillations have been418

shown to develop on a time scale of about two weeks in these cell types, raising intriguing419

questions on the role of gradual development of the oscillations [40]. Here we demonstrated that420

clear oscillations in one core circadian clock gene Bmal1, and to a lesser extent in Per2, can be421

induced within 3-4 days by increasing cell density (Figure 5B). Interestingly, we found that these422
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oscillations were prevented from developing in the presence of the inhibitors commonly known423

as 2i (Figure 5C), thereby suggesting a potential role of density-dependent mESC differentiation424

in the establishment of the oscillations. Recent experiments have uncovered cell-density effects425

on strengthening of the clock oscillations [44, 45], potentially via inter-cellular TGFβ signalling426

[45]. Our results suggest the intriguing possibility that the kinetics of oscillation development427

in stem cells could depend on cell-cell signalling during differentiation, and remains an exciting428

avenue to be further studied in the future.429

The oscillatory (alternate hypothesis) versus non-oscillatory (null) classification problem will430

necessarily involve defining somewhat arbitrary cutoffs. However, based on recent discussions on431

p-values and interpretation of Bayes Factors as odds ratios, it has been proposed that a p-value of432

0.005 is a more sensible cutoff compared to the widely used 0.05 value, corresponding to a Bayes433

Factor Bound of ∼ 14 [33]. We empirically notice that this guideline seems to be approximately434

consistent with our own experimental observations. In our case, the real “gold standard” non-435

oscillatory datasets are the pluripotent mESC datasets (Fig. 5A), where we expect no oscillations436

to be present even at the single cell level. In these datasets, we consistently find that the Bayes437

Factors produced by ODeGP are below 14. The interpretation of the unsynchronized (vehicle438

treated), non-mESC datasets such as in Figure 4A is more challenging. While these datasets439

are supposed to be non-oscillatory, we observe Bayes Factors that are somewhat higher (16.5440

in Fig. 4A and as high as 274 in Fig. S2B). This suggests the presence of weak oscillations,441

which might be arising from plating of cells and/or addition of fresh media, which are both442

known to induce a small degree of synchronization between the single cell oscillators. After Dex443

synchronization however, the oscillations are expected to be stronger, which is correctly being444

reflected in each case by the much higher Bayes Factors (Fig. 4B,C). Overall, consistent with445

the recent recommendations in the statistics community, our results suggest that a Bayes Factor446

cutoff of 14 might be a good choice for classifying oscillatory versus non-oscillatory datasets. In447

addition, Bayes factors close to 14 could be classified as weak oscillations.448

Though not explored extensively, there are a few prior examples of the use of GPs in modeling449

biological data, for example in identifying differentially expressed genes [36, 46], detecting os-450

cillations [47, 48] and the discovery of spatial patterns in gene expression [49]. The method in451
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[48] uses a principle similar to ours with the comparison of a non-oscillatory GP model to an452

oscillatory GP model. However, this method does not explicitly incorporate a non-stationary453

functional form to encode correlations between the data at different time points in its oscillatory454

model, and also compares its performance only with that of the LS Periodogram (which never455

falls among the best 3 performing methods in our analysis). GPrank [46] on the other hand uses456

GPs to model genome-wide time series data. Though it was not created for the specific purpose457

of detecting oscillations, the workflow followed by this method is similar to ours in terms of the458

combination of two GP models with Bayesian model selection. The significant difference between459

GPrank and ODeGP is in the choice of kernel used to define the alternate hypothesis (the RBF460

kernel is used in GPrank). Our results show that ODeGP almost always outperforms GPrank461

(Tables 2 and 3), demonstrating the importance of careful choice of the kernel for the specific462

problem at hand. This point also highlights the flexibility of GPs in modeling various kinds of463

datasets simply by appropriate choice of kernel functions. Similar to GPrank, the output metric464

used by ODeGP to make a decision on the presence of oscillations is the Bayes factor, which is a465

ratio of the marginal likelihoods of the competing models. The marginal likelihood 17 computed466

during GP regression automatically incorporates a measure of the complexity of the model being467

considered through the log|K| term. A larger log|K| for a given model generally results from468

higher covariance values between the data’s values at different time points, which produce wider469

confidence bounds in the GP posterior. Wider bounds allow a greater flexibility of functions in470

the posterior distribution, indicating that the model is more complex. For this reason, we did471

not additionally penalise the number of hyperparameters of both models when comparing the472

two (something that is generally done in regression methods which use the BIC/AIC for model473

selection). Importantly, we found that the Bayes factor was distinctly different between datasets474

that were known to be oscillatory versus non-oscillatory, thus highlighting the usefulness of this475

metric in the classification problem.476

While our oscillation detection method seems to significantly improve upon currently used meth-477

ods, there are a number of limitations and potential areas of improvement. As can be seen from478

Tables 2 and 3, ODeGP is clearly inferior to RAIN in detecting oscillations in asymmetric wave-479

forms. Providing ODeGP an enhanced ability to model asymmetric oscillations represents a480
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clear avenue for improvement, which may be done by identifying new suitable functional forms481

for the hyperparameters of the non-stationary kernel. The runtime of our method is also sig-482

nificantly higher than that of most of the existing methods we tested (though it is comparable483

to that of RAIN), due to the hyperparameter optimization routine we used. Furthermore, the484

multiple hypothesis correction provided with ODeGP is similar to the Bonferroni correction in485

the frequentist setting [38]. This correction results in many false negatives when there are many486

hypotheses to be tested, and therefore ODeGP can currently be used only with smaller datasets487

such as those generated in qPCR, eclosion, egg-laying or feeding experiments. Detecting rhyth-488

mic or differentially rhythmic genes from genome-wide datasets is not possible with the current489

implementation of our method, and remain avenues for future improvement.490

Conclusions491

While much work has been done in developing algorithms to detect oscillations in time series492

datasets, there is clearly room for significant improvement. Our method combining Gaussian493

processes and Bayesian model selection demonstrates the flexibility of GPs, providing a highly494

sensitive approach for classifying oscillatory versus non-oscillatory datasets without using p-495

values. We hope that our results along with the user-friendly ODeGP R package, will spur496

more careful exploration of these approaches in the future. Applied to new experimental data,497

ODeGP provides initial evidence for rapid development of circadian clock oscillations upon498

increasing density of mESCs, and it would be exciting to see in future if these results have499

broader implications in the context of development and inter-cellular signalling.500

Software Availability501

ODeGP is provided as an easy to use R package with this manuscript, and can be downloaded502

from either https://github.com/shabnamsahay/ODeGP or https://github.com/Shaonlab/ODeGP503
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