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Abstract

We present a method for calculating the asymptotic shape of interacting vortex filaments in incompressible Euler flows using delay

differential equations. Neglecting the filaments’ core-size, the asymptotic shape of the filaments is self-similar up to logarithmic

corrections, albeit non-universal. We demonstrate explicitly that the asymptotic geometry of the collapse of two interacting fil-

aments depends on the pre-factor of the scaling law of their separation distance, the angle between the tangent vectors at their

approaching tips, and the ratio of their circulations. We then explore the validity of the filament approximation in the limit of

approaching the singularity. We show that a sufficiently fast stretching-rate to maintain this approximation is inconsistent with all

collapse geometries. This suggests that a singular solution to the Euler equations based on stretching of vortex filaments is unlikely

to exist for any initial conditions.
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1. Introduction

A fundamental open problem in mathematics and fluid dynamics is the global regularity of the three-dimensional

incompressible Euler equations [1, 2, 3, 4, 5, 6]. One way to express this problem is whether a three-dimensional

incompressible Euler flow with smooth initial conditions can develop a singularity with infinite vorticity in finite time.

The Beale-Kato-Majda criterion [7] requires any solution with a finite-time blowup to have a divergence in the time

integral of the maximum vorticity. For vortex tubes, this implies that at some parts the tubes must be stretched to the

point of vanishing cross-section. Constructing flows that can stretch vortex lines thus becomes a promising approach

in the search for a singularity. We focus on a subset of such flows: those involving interacting vortex filaments

[8, 9, 10, 11, 12, 13, 14, 15, 16, 4].

Numerical searches for initial conditions of vortex filaments that can lead to a singularity have not been successful

so far [3]. It seems that generic initial conditions are not promising candidates. A systematic search over all initial
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conditions is also not practically feasible; or worse, it is likely that singular solutions are unstable and not amenable

to a numerical search.

We have proposed a different approach for searching: starting from the alleged singularity and working backwards

[17]. Nothing precludes this a priori as the Euler equations are time-reversible. Our simplifying assumption is that

infinitesimally close to the singularity (far away from the initial/boundary conditions), the dynamics follow scaling-

laws set by dimensional analysis [18]. For vortex filaments, this means that the length scale characterising the shape
of the filaments is l(t) =

√
Γ(t∗ − t), where Γ is the only dimensional parameter in the problem, the circulation,

and t∗, the time of the alleged singularity. This vanishing length scale, characterising, for instance, the radius of

curvature of the filaments and the inter-filament distance, captures the collapse of the filaments to a singularity. The

core size, however, follows its own scaling law σ(t) ∼ (t∗ − t)p/2. For a self-consistent collapse, where the filament

approximation holds for all times, the core-size must vanish faster than the length-scale characterising the shape of

the filaments. We must satisfy p > 1 to avoid core-deformation and have a self-consistent filament approximation.

The different scaling of the core also implies that the solutions are not strictly self-similar [17]. Strictly self-similar

solutions of finite-energy vortex filaments cannot be singular [19, 20]. See also [21, 22] for use of multiple length

scales to characterise the collapse after the breakdown of the filament approximation.

Here, we analyse the asymptotic collapse geometry of two interacting vortex filaments. The collapse geometry

is not universal and is characterised by a two-parameter family of solutions for fixed circulations. We explicitly

demonstrate the dependence of the geometries on the pre-factor of the scaling law of the separation distance of the

two filaments and the angle between the the tangents of the approaching tips. The asymptotic geometry also changes

with the ratio of the circulation of the two filaments. In the last section, we relate the scaling exponent of the core

to the collapse geometry, and argue that p vanishes in the asymptotic limit for all geometries. The culprit for this is

the self-interaction term of the filaments, which has a logarithmic dependence on the core size. It is unlikely that a

singular stretching of vortex filaments exists for any initial conditions. Sections 2, 3, 4, and 7 are succinct versions of

the discussion in [17]; sections 5 and 6 expand upon these results, focussing on the non-universality of the asymptotic

limit.

2. Filament approximation

Vortex filaments approximate the velocity field produced by vortex tubes, in which the vorticity distribution is

limited to a tube of radius σ [23, 24]. When the radius of curvature of the filament is much larger than the core radius,

the velocity field produced by each vortex filament is given by the regularised Biot-Savart law [23, 25],

v(r0) = − Γ

4π
log(

rc
σ
)κb̂− Γ

4π

∫ ′ (r0 − r(s))× t̂(s)

|r0 − r(s)|3 ds, (1)

with Γ the circulation of the filament, r(s) the shape of the filament, t the tangent vector and r0 the location where

the velocity field is measured. The approximation accurately captures the interaction of multiple filaments with each

other, as long as the core radius of each filament is much smaller than the inter-filament distance. σ is the cut-off

imposed to regularise the divergence in self-interaction; physically, it corresponds to the vortex core size. b̂ = t̂× n̂
is the binormal vector, and

∫ ′
the regularised integral that runs along the non-local part of the filament. Note that the

dynamics of the shape of the vortex filament depends very weakly (logarithmically) on the dynamics of the core (σ);

hence the two problems are naturally decoupled.

The large fluid shears associated with colliding vortex filaments can cause dramatic changes to both the shape of

the filament and the shape of the core. For the vortex filament approximation to remain an accurate description of a

collision, the core radii of the vortex filaments must remain smaller than the length-scales characterising the shape of

the filaments, uniformly in time; this means that the radius of the tubes must shrink more quickly than the distance

between colliding filaments.

The filament core radius evolves to satisfy volume conservation. If s measures arc length along a filament, with

the original filament parameterised by α, then sα measures the stretching of a filament. We then have

σ2 =
σ2
0

sα
. (2)
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In general, if the dynamics of the vortex core is decomposed into a local coordinate system,

dr

dt
= W t̂+ U n̂+ V b̂, (3)

where n, t,b are respectively the normal, tangent and binormal vectors, then the stretching of the filament evolves

according to

dsα
dt

= (
dv

ds
· t̂)sα =

dW

ds
sα − Uκsα. (4)

The first term on the right hand side of Eq. (4) is the stretching of the filament due to local shear, whereas the second

term is due to motion in the normal direction. Since the circulation is constant, the local vorticity in the vortex filament

is given by ω = Γ(πσ2)−1 ∝ Γsα. Hence, a diverging vorticity is equivalent to a diverging sα.

3. The asymptotic ansatz

The key assumption in the asymptotic limit is that the shape of the filaments follow the scaling law set by the

dimension of circulation to leading order, coupled to a core that follows its own scaling law. There are two length

scales – one characterising filament shape and the other the size of the core, whose scaling exponents are coupled

through the governing equations. We want to know if the asymptotic dynamics can self-consistently stretch the core

to generate a singularity.

From dimensional analysis (see, e.g. [26]), to leading-order, the characteristic length scales governing the filament

shapes are �i(t) =
√|Γi|(t∗ − t), where i = 1, 2 denotes filament one or two with circulation Γi, and t∗ the time of

singularity. Throughout the remainder of this paper, we write all the equations for only the first filament i = 1, with

the second filament obeying the complementary equation. The shapes of the filament then take the form

r1(s, t) = �1(t)G1(η), (5)

where η = s/�1(t), and s measures arc length along the filament. In general, G can have explicit time-dependence;

we neglect this now, but return to it at the end of this paper. Substituting the above similarity ansatz into Eq. 1 gives a

set of coupled ordinary integro-differential equations for the shapes of the filament.

These equations are difficult to solve (see section below), but we can still use the asymptotic solution Eq. 5 to derive

a condition for the self-consistency of the collapse of the core. Substituting the asymptotic ansatz into Eq. 4: The nor-

mal and tangential self-similar velocity components obey U = u(η)
√|Γi|/(t∗ − t) and W = w(η)

√|Γi|/(t∗ − t),

whereas the curvature of the filament is given by κ = k(η)/
√|Γi|(t∗ − t); hence, Uκ = u(η)k(η)/(t∗ − t) and

Ws = w′(η)/(t∗ − t). Here, u(η), k(η), and w(η) are location dependent pre-factors, given by the solution of

asymptotic equations. Putting this together in Eq. 4, we obtain that

dsα
dt

=
w′(η)− u(η)k(η)

t∗ − t
sα. (6)

Hence, the stretching rate of the filament obeys a power law sα ∼ (t∗−t)−p(η), with the position-dependent exponent

p(η) given by the asymptotic solution! Eq. 2 then implies that the filament radius vanishes according to σ ∼ (t∗ −
t)p(η)/2. The observation that the pre-factors in the asymptotic solutions for outer filaments control the power-law

exponents for the core collapse was anticipated by Moffatt [27], who studied the behaviour of inviscid vortex filaments

under power-law diverging strains.

We have therefore arrived at a criterion for self-consistency of the collapsing filament solution: self-consistency

requires that the filament radius decrease faster than the filament separation distance, or p > 1. Indeed, since the

vorticity scales with sα, this is a realisation of the Beale-Kato-Majda criterion [7] for vortex filaments. p = 1 is not

allowed, since it would imply a solution where all length-scales follow the same scaling law, namely∼ √t∗ − t. Such

finite-energy ‘strictly’ self-similar solutions cannot be singular [19]. The condition p > 1 also satisfies the geometrical

constraints of Constantin, Fefferman & Majda [28] and bounds of Deng, Hou, & Yu [29] for a singularity.
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4. Analysis

Substituting the similarity ansatz (Eq. 5) into Eq. 1 results in an equation for the shape of the filaments,

G1 − ηG′
1 ≈ α

Γ1

|Γ1|G
′
1 ×G′′

1 +
Γ2

√|Γ2|
2π

√|Γ1|

∫ (√|Γ1|G1(η)−
√|Γ2|G2(ζ)

)
×G′

2(ζ)

|√|Γ1|G1(η)−
√|Γ2|G2(ζ)|3

dζ, (7)

where α = 1
2π ln

(
rc
σ

)
is the self-interaction term, and the integral, the non-local contribution of the Biot-Savart kernel.

The approximate equality indicates that the two sides of the above expression are only equal modulo the tangential

component of the velocity along the filament. Since the tangential component of the velocity does not change the

shape of the filaments, we can still use Eq. 7 to compute the asymptotic collapse geometry.

The self-interaction term does not contribute to stretching since it points along the binormal direction. The only

term that needs to be considered is the non-local contribution. To proceed, we first derive an explicit expression for

the highest-order derivative term G′′
1 from Eq. 7. However, as noted, Eq. 7 is only an equality modulo the component

of the velocity field tangent to the filaments. To get around this nuisance, we project out the tangential component by

taking the cross product of both sides of Eq. 7 with G′
1. The first term on the right hand side simplifies further using

the vector identity, G′
1 ×G′

1 ×G′′
1 = G′

1(G
′
1 ·G′′

1) −G′′
1(G

′
1 ·G′

1) = −G′′
1 , where in the last step we have used

|G′
1| = 1, or equivalently G′

1 ·G′′
1 = 0.

Following the above procedure, G′′
1 is given by,

G′′
1(η) = −

|Γ1|
αΓ1

G′
1(η)×

(
G1(η)− Γ2

√|Γ2|
2π

√|Γ1|

∫ (√|Γ1|G1(η)−
√|Γ2|G2(ζ)

)
×G′

2(ζ)

|√|Γ1|G1(η)−
√|Γ2|G2(ζ)|3

dζ

)
. (8)

The integration runs along the length of the second filament and the non-local portion of the first filament, which can

be thought of as another filament.

The shape of the filaments (asymptotic solution) has an explicit time dependence through the parameter α =
(2π)−1log(rc/σ). If we assume that rc/σ → ∞ as t → t∗, so that the asymptotic solution is self-consistent, then

α→∞ as t→ t∗. Eq. 8 then implies that in the limit of approaching the singularity, G′′ → 0; the filament curvature

in similarity space asymptotically vanishes. The curvature in real space |G′′|/l1 still diverges, however, more slowly

than 1/
√
t∗ − t. This assertion is only valid assuming that the non-local integral does not compensate for the growth

in α. The non-local contributions is bounded in the limit t→ t∗, since it corresponds to the Biot-Savart integral over

filaments with asymptotically fixed shape (time-independent integrand). For a discussion on non-self-similar solutions

(where the integrand is time-dependent) see [17]. Time-dependence of the limits of this integral can not compensate

for any form of divergence in α, since to properly match any solution of Eq. 8 to an outer solution, the asymptotic

limit η → ∞ must satisfy G ∼ η. Contribution of a straight line to the Biot-Savart integral even when extended to

infinity is always finite.

Given the vanishing curvature, it is possible to replace the interaction integral in Eq. 8 with a (non-integral)

interaction term of straight filaments. Note that in the limit of approaching the singularity this approximation becomes

exact as the filaments become straight lines; the corrections to the approximation are of the order 1/α and vanish for

a self-consistent singularity.

5. Delay differential equations

Under the straight filament approximation the velocity induced at point R by a vortex filament is

v(r0) = − Γ

4π
log(

rc
σ
)κb̂− Γ

2π

(r0 − r(s))× t̂(s)

|r0 − r(s)|2 . (9)

where r(s) is the closest point on the filament to point r0. For well-behaved geometries, this is equivalent to

d|r0 − r(s)|
ds

= 0. (10)
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The arc length parameter η is used to denote the distance in similarity space along the filament from the tip.

We define two other arc length parameters η1 and η2 to designate the corresponding nearest points on the other

filament. This means that on filament 1, G1(η) is closest to G2(η2); and on filament 2, G2(η) is closest to G1(η1).
Equivalently,

d

dη2
|
√
|Γ2|G2(η2)−

√
|Γ1|G1(η)|2 = 0. (11)

For well behaved geometries (and fixed η), this is equivalent to,√
|Γ2|G′

2(η2) · (
√
|Γ2|G2(η2)−

√
|Γ1|G1(η)) = 0. (12)

Geometrically, the above equation tells us that the line connecting a point on filament 1 to the nearest point on filament

2 should be perpendicular to the tangential component of filament 2 at that point. η2 is clearly a function of η. Its

differential dependence on η is given by,

dη2
dη

=

√|Γ1|G′
2(η2) ·G′

1(η)

G′′
2(η2) ·

(√|Γ2|G2(η2)−
√|Γ1|G1(η)

)
+
√|Γ2||G′

2(η2)|2
(13)

Applying the straight filament approximation to Eq.8 gives

G′′
1(η) = −

|Γ1|
α1Γ1

G′
1(η)×

⎛
⎝G1(η)− Γ2

π
√|Γ1|

(√|Γ1|G1(η)−
√|Γ2|G2(η2)

)
×G′

2(η2)

|√|Γ1|G1(η)−
√|Γ2|G2(η2)|2

⎞
⎠ . (14)

To evaluate G′′
1(η) we need the position (and the tangent) of the point G2(η2) on the second filament closest to

G1(η). We have derived an expression for the evolution of η2 (Eq.13). To have a closed set of ordinary differential

equations that can be solved numerically using iterative methods, we need to go to the higher order differential of

filament shape G′′′
1 . Differentiating the last equation with respect to η gives,

G′′′
1 (η) = − |Γ1|

α1Γ1
G′′

1(η)×
⎛
⎝G1(η)− Γ2

π
√|Γ1|

(√|Γ1|G1(η)−
√|Γ2|G2(η2)

)
×G′

2(η2)

|√|Γ1|G1(η)−
√|Γ2|G2(η2)|2

⎞
⎠ (15)

− |Γ1|
α1Γ1

G′
1(η)×

⎛
⎝G′

1(η)−
Γ2

π
√|Γ1|

(√|Γ1|G′
1(η)−

√|Γ2|G′
2(η2)

dη2

dη

)
×G′

2(η2)

|√|Γ1|G1(η)−
√|Γ2|G2(η2)|2

− Γ2

π
√|Γ1|

(√|Γ1|G1(η)−
√|Γ2|G2(η2)

)
×G′′

2(η2)
dη2

dη

|√|Γ1|G1(η)−
√|Γ2|G2(η2)|2

+
2Γ2

π
√|Γ1|

(√|Γ1|G1(η)−
√|Γ2|G2(η2)

)
×G′

2(η2)

|√|Γ1|G1(η)−
√|Γ2|G2(η2)|4(√

|Γ1|G′
1(η)−

√
|Γ2|G′

2(η2)
dη2
dη

)
·
(√

|Γ1|G1(η)−
√
|Γ2|G2(η2)

))

Eq.13 and Eq. 16, alongside two equivalent equations for the shape of the second filament G2, form a set of

first-order coupled delay ordinary differential equations (ODEs) in 20 variables. The initial conditions that need to

be specified are the values of G1, G2, G′
1, G′

2 at the tip of the filaments η = 0. G′′
1 , and G′′

2 (using Eq. 14) are

then computed and form the remaining initial conditions. We also impose that the tips are reciprocally the closest two

points on the filaments η1(0) = 0 and η2(0) = 0. The coupled ODEs are solved using an explicit iterative method.

Using the symmetries in the problem, we can enumerate the number of independent degrees of freedom in the

initial conditions that can give rise to distinct collapse geometries. We assume that the two filaments have equal

magnitudes of circulation, Γ1 = −Γ2 = Γ. There are two independent degrees of freedom in the initial conditions,
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Fig. 1. Collapse geometries. Solution of the delay ODEs, G1,2(η), for different values of parameters A and χ (in degrees); α = 25. Γ1 =

−Γ2 = 1. The shape of the filaments, quantified by the opening angles θ and φ, varies for different values of A and χ. The definition of opening

angles is shown on the bottom right. The tangent vectors at the tips of the filaments are depicted as orange vectors (top right).

generating a two-parameter family of solutions. One parameter corresponds to the separation distance of the tips of

the filaments in similarity space, A = |G1(0) −G2(0)|. When scaled back to real space, A is the pre-factor of the

scaling law (A
√
Γ(t∗ − t)) of the inter-filament separation distance. The other parameter is the angle χ between the

tangent vectors at the tip of the filaments, G′
1(0) and G′

2(0). Since the tips are by definition the two closest points on

the filaments, G′
1,2(0) · (G1(0) −G2(0)) = 0. The direction of the tip tangent vectors can be characterized using

only angle χ up to a trivial global rotation.

6. Non-universality of similarity solutions

To demonstrate the non-universality of the collapse geometry, we have solved the similarity delay ODEs using a

four-stage, fourth-order explicit Runge-Kutta iterative method [30], for various values of the two parameters A and

χ. The shape of the filaments is quantified using the geometry of the resulting ‘tent’, as characterized by the opening

angles θ1,2 and φ1,2 (see Fig.1). Because the filaments are assumed to have the same circulation magnitude, for all

the computed geometries, θ1 = θ2 = θ and φ1 = φ2 = φ (for the case with different circulations see below).

As demonstrated in Fig.1, the choice of parameter A modifies the geometry of the solution as reflected in the

different opening angles. Similarly, changing the orientation of the tangent vectors, angle χ, also results in a different

asymptotic geometry. Fig.2 depicts a systematic sweep of the two parameters. Changing A significantly modifies the

intra-filament opening angle θ, whereas, changing χ mostly modifies the inter-filament angle φ. It is also possible

to explore asymptotic collapse geometries where the magnitude of circulation is not the same for the two filaments.

With different circulations, the shape of the filaments are not identical – i.e. as characterised by the intra-filament

opening angles θ1 �= θ2, resulting in an asymmetric collapse geometry. Fig.3 depicts the asymptotic solutions for a

variety of Γ2 values for a fixed circulation in the first filament, Γ1 = −1. For some values of asymmetric circulations,
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Fig. 2. Non-universality of the asymptotic solutions. Left: Intra-filament opening angle (θ) as a function of A, the pre-factor of the scaling of the

filament separation distance, for different values of χ (in degrees). θ does not show a strong dependence on χ. Right: Inter-filament opening angle

(φ) as a function of A for same set of χ values.

one filament crosses the other’s opening plane (the plane spanned by the filaments’ arms emanating from its tip); this

results in the non-monotonous behaviour of φ1 with increasing Γ2 seen in Fig.3.

Since the asymptotic geometry is not unique and dependent on the initial conditions in similarity space (or equiv-

alently pre-factors of scaling laws in real space), the collapse geometry is potentially non-universal. Of course, this

is a necessary but not sufficient condition for non-universality. We need to show that different asymptotic geometries

correspond to well-defined initial conditions in real space. For instance, it is conceivable that the asymptotic filament

shapes with non-zero χ can not be matched to any real space solution of two interacting filaments (for a general

discussion on matching see [31]). Nevertheless, recent numerical analysis of reconnection of vortex rings and lines

[32, 33] (primarily focussing on Gross-Pitaevskii equations with relevance in quantum vortex reconnections [34, 35])

have demonstrated dependence of scaling pre-factors on the initial conditions and a variety of ‘tent’ geometries prior

to reconnection. This is contrary to the claims in [36] that suggests a universal geometry for reconnection of two

vortex filaments.

Non-universality of the asymptotic collapse is encouraging for finding a singularity. If one particular asymptotic

geometry corresponds to a self-consistent singularity, then a search for the corresponding initial conditions is justified.

However, as we show below, the entire family of filament shapes in similarity space will eventually succumb to core-

deformation, precluding the possibility of singular stretching.

7. Absence of singularity

By substituting the scaling ansatz of the core into the stretching equation (Eq.6), we can solve for the scaling

exponent p. Stretching is caused by the non-local contribution to the velocity, since local self-induced velocity points

in binormal direction and does not stretch. The stretching exponent p is given by:

p(η) =

√
t∗ − t√|Γ1|

(
dv1

dη
·G′

1(η)

)
. (16)

Evaluating this expression at η = 0, which by definition corresponds to the tip of the collapsing filaments (see

above), gives,

p1(η = 0) = − Γ2

2π
√|Γ1|

√|Γ1|G1(0)−
√|Γ2|G2(0)

|√|Γ1|G1(0)−
√|Γ2|G2(0)|2

· (G′′
2(0)

dη2
dη

×G′
1(0)

)
. (17)
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Fig. 3. Asymmetrical circulations. Left: Asymptotic collapse geometries for Γ2 = 10, 3.981, 1, 0.1; for all cases, Γ1 = −1, α = 15, A = 1.2,

and χ = 0. With different circulations, the filaments have different shapes, i.e. θ1 �= θ2, resulting in asymmetrical collapse geometry. The

asymptotic shape as quantified by the opening angles varies with the changing Γ2. Right: θ1 and φ1 opening angles for a systematic sweep of Γ2

for A = 1.2, 1.4, 1.6, α = 15, and χ = 0.

The most important feature of this result is that p(η = 0) vanishes in the limit of τ → ∞ because G′′ vanishes in

this limit. We assumed p > 1 for a self-consistent singular collapse, but computed p→ 0 in the limit of approaching

the singularity, resulting in a contradiction. This shows that singularities of pairs of vortex filaments can not happen.

We remark that the term dη2

dη , capturing the asymmetry between the shape of the two filaments, remains regular

because the circulations Γ1,2 are always finite (see Eq. 13). The logarithmic corrections to the scaling law imply

that the self-similar solution is not strictly valid; there are dynamics in log(t∗ − t). Although it is unlikely that even

non-self-similar singular solution can exist involving stretching of vortex filaments (for details see [17]).

The essential reason for lack of any solution with singular stretching is that the rather slow (logarithmic) flattening

out of the filaments eventually overcomes any clever tricks with filament shapes that can be incorporated using initial

conditions or unequal circulations.

8. Summary

By imposing a self-similar ansatz on the length scales characterising the shape of vortex filaments (not their core

size), we were able to calculate the filaments’ collapse geometry in the asymptotic limit of approaching a singularity.

The collapse geometries are not universal; for the case of two filaments, they form a family of solutions parametrized

by the pre-factor of the scaling of the inter-filament distance and the angle between the tangents at the filaments’

tips. We then argued that for all asymptotic geometries, the logarithmic coupling between the core size and the self-

induced velocity prohibits the core from shrinking fast enough to maintain the filament approximation all the way to

a singularity. In real space, this is manifested as a logarithmic correction to the scaling of the radius of curvature of

the filaments (which is considerably difficult to detect numerically): the separation distance of the filaments vanishes

faster than their radius of curvature by a factor of −log(t∗− t), eventually resulting in core-deformation. Our starting

assumption of existence of a singularity through stretching of vortex filaments is not self-consistent. A generalisation

of this argument to multiple filaments suggests that singular stretching of vortex filaments is not possible for any set

of initial conditions.
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It is worthwhile to extend this methodology to other promising mechanism for generating a singularity in the Euler

equations. Arbitrary close to an alleged singularity, a vanishing length scale should provide simplified dynamics, for

instance self-similarity. Working backwards from the singularity, the simplified dynamics can be assumed and then

checked for self-consistency. If the asymptotic limit proves self-consistent (unlike the above case), the solution must

be matched back to the regular dynamics and a suitable set of initial conditions.
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