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SUMMARY
Tracing the lineage history of cells is key to answering diverse and fundamental questions in biology.
Coupling of cell ancestry information with other molecular readouts represents an important goal in the field.
Here, we describe the CRISPR array repair lineage tracing (CARLIN) mouse line and corresponding analysis
tools that can be used to simultaneously interrogate the lineage and transcriptomic information of single cells
in vivo. Thismodel exploits CRISPR technology to generate up to 44,000 transcribed barcodes in an inducible
fashion at any point during development or adulthood, is compatible with sequential barcoding, and is fully
genetically defined.We have usedCARLIN to identify intrinsic biases in the activity of fetal liver hematopoietic
stem cell (HSC) clones and to uncover a previously unappreciated clonal bottleneck in the response of HSCs
to injury. CARLIN also allows the unbiased identification of transcriptional signatures associated with HSC
activity without cell sorting.
INTRODUCTION

Generating animal models that enable cell lineage tracing in vivo

has been a long-standing aim in biological research. Historical-

ly, lineage tracing in mammals has been limited to labeling and

tracking small populations of cells through the use of dyes or

fluorescent markers (Kretzschmar and Watt, 2012). Although

these techniques helped resolve major questions in biology,

from lineage commitment during early development (Ba1akier
and Pedersen, 1982) to adult stem cell behavior (Snippert

et al., 2010), the low number of clones analyzed at any one

time point limit comprehensive understanding of global stem

cell dynamics within tissues. These approaches are also intrin-

sically limited in their ability to trace individual cells and there-

fore provide limited insight into heterogeneity in cell popula-

tions. Retrovirally delivered DNA barcodes have been used as

clonal markers, particularly in the context of blood generation
1410 Cell 181, 1410–1422, June 11, 2020 ª 2020 Elsevier Inc.
(Gerrits et al., 2010; Lu et al., 2011; Schepers et al., 2008).

However, introduction of such barcodes requires stem cells

to be extracted from the tissue and manipulated. Recently,

two mouse models have been developed that enable barcod-

ing of cells in their native environment using randomly inte-

grated transposons (Sun et al., 2014) or recombinases that

create genetic diversity in a distinct locus (Pei et al., 2017).

The use of these models has revealed dramatic differences be-

tween hematopoietic stem cell (HSC) behavior in unperturbed

conditions versus transplantation and has highlighted important

functional heterogeneity within the HSC compartment (Pei

et al., 2017; Rodriguez-Fraticelli et al., 2018). However, these

models are limited in that they only provide lineage information

and do not provide molecular insight into the genetic program

driving heterogeneous behavior.

The advent of CRISPR-Cas9 has led to the development of

additional lineage tracing tools that use errors from non-
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homologous end-joining DNA repair to generate a high diversity

of unique and heritable DNA barcodes. A first proof-of-principle

study demonstrated the feasibility of lineage tracing via this

method in the zebrafish embryo (McKenna et al., 2016). Modified

variants of this system that use expressed barcodes have al-

lowed for the simultaneous measurements of single-cell gene

expression levels and lineage tracing (Alemany et al., 2018; Raj

et al., 2018; Spanjaard et al., 2018). More recently, systems

combining delivery of expressed barcodes with transposons in

the mouse embryo have been described (Chan et al., 2019; Kal-

hor et al., 2018). Both of these approaches use constitutively ex-

pressed Cas9 and use multiple target arrays (barcodes) to

generate diversity. However, new embryonic manipulations are

required to generate mice every time, and the resulting mice

are impractical for breeding given the high number of randomly

inserted transgenes. Therefore, these models are unsuitable

for lineage analysis of adult tissues.

Here, we present a versatile mouse model that allows induc-

ible CRISPR-based lineage tracing that is genetically defined, in-

corporates inducible, transcribed barcodes, and works across

adult mouse tissues. Furthermore, we have developed the anal-

ysis tools and reference datasets required to interpret the de-

tected barcodes and quantify their statistical significance. Due

to our ability to simultaneously interrogate lineage and transcrip-

tional profiles of single cells, the CRISPR array repair lineage

tracing (CARLIN) system presents unique advantages to study

stem cell clonal dynamics compared with previously generated

cell lineage tracing tools. We exploit these advantages here to

unveil previously unknown aspects of hematopoiesis during

development and in adulthood after stress.

RESULTS

Inducible and Dose-Dependent Molecular Barcoding in
Mouse Embryonic Stem Cells
We set out to generate a genetically defined mouse model in

which we could (1) record the lineage histories of individual cells

within their own DNA, and (2) read out lineage histories alongside

gene expression profiles at the single-cell level. Based on the

GESTALT model that has been successfully used for molecular

recording in zebrafish (McKenna et al., 2016), we designed 10

single guide RNAs (sgRNAs) that enable efficient cutting of target

sites in the presence of Cas9 (Figure S1A) with minimal off-target

activity within themouse genome (STARMethods). We designed

the guide RNA (gRNA) cassette in two iterations, one where indi-

vidual U6 promoters drove sgRNA expression (Figure 1A), and a

second cassette carrying tetO-operons upstream of each

sgRNA (iCARLIN; Figure S1B). Unless otherwise stated, all

data presented here correspond to the first system. We also de-

signed a 276 bp array containing target sites perfectly matching

each of the expressed gRNAs (Figures 1A and 1B; Table S1).

Constitutive expression of the molecular recorder array is

achieved through its placement in the 30 UTR of a fluorescent

protein driven by the constitutive CAG promoter. All of these el-

ements were inserted together in the widely used Col1a1 locus

via recombinase-mediated integration into mouse embryonic

stem cells (ESCs) that also express an enhanced reverse tetracy-

cline transactivator (M2-rtTA) from the ubiquitous Rosa26 pro-
moter (Beard et al., 2006). We then generated mouse lines

from these ESCs. To have temporal control of Cas9 expression,

we separately created a mouse line that expresses both doxycy-

cline-dependent Cas9 (tetO-Cas9; integrated in the Col1a1 lo-

cus) and M2-rtTA (integrated in the Rosa26 locus). Finally, we

crossed these two mice lines to generate CARLIN ESCs and

CARLIN mice that carry all the transgenic elements.

Taken together, doxycycline (Dox) induction drives Cas9

expression, which leads to double-strand DNA breaks in the

target array. These breaks are repaired to result in a diverse

range of altered DNA sequences (referred to as CARLIN alleles)

that are expressed and stably inherited (Figure 1A). To analyze

the CARLIN alleles from sequencing of the target array, we

developed a novel bioinformatic pipeline that accounts for the

location at which the Cas9-dependent alterations are expected

(Figures 1B and S2A–S2C; Tables S2 and S3; STAR Methods).

This code is available at https://gitlab.com/hormozlab/carlin.

To test the ability of our system to generate inducible and

detectable CARLIN alleles at the DNA level, we characterized

the CARLIN edits present in CARLIN ESCs after Dox treatment

(STARMethods). Althoughwe observed little background editing

in the absence of Dox (Figures S1C and S1F), a diverse set of

repair outcomes was generated after Dox exposure (Figures

1C and 1D) as determined by high-throughput sequencing.

These edits included deletions spanning 1–252 base pairs (bp),

the most common of which spanned multiples of 27 bp (the

length of a target site and adjoining PAM+linker sequence),

and insertions of up to 51 bp in length (Figure 1D). The edits

occurred throughout the array, with different target sites display-

ing slightly different indel preferences (Figure 1E). In initial exper-

iments, we observed 301 distinct alleles in 453 cells with edited

alleles, 219 of which were only observed in one cell, indicating

that CARLIN can generate highly diverse repair outcomes after

Cas9 activity. BecauseCARLIN alleles are generated by different

indel events, the distribution of CARLIN alleles detected may be

distorted due to length-dependent amplification of transcripts

during library preparation and sequencing. We verified that the

distribution of allele lengths produced by the bioinformatics

pipeline was consistent with the distribution produced by frag-

ment analysis as a partial validation that the experimental proto-

col and bioinformatics pipeline preserve the distribution of

CARLIN alleles observed in the biological sample (Figure S2D).

We also investigated how CARLIN editing is influenced by the

duration and magnitude of Cas9 expression. We exposed ESCs

to low, medium, and high dosages of Dox (0.04, 0.20, and

1.00 mg/mL, respectively), and performed bulk DNA sequencing

prior to induction and at a series of time points up to 96 h. As ex-

pected, both the fraction of cells with edited CARLIN sequences

and the diversity of CARLIN alleles increases with both length

and dose of induction (Figures 1F, 1G, and S1C–S1F). This anal-

ysis also reveals that the nature of CARLIN edits can act as a

readout of induction duration and strength. Specifically, we

observe a decrease in the number of unmodified target sites

(calculated as CARLIN potential) (Figure 1H; STAR Methods)

and an increase in the average length of deletions with increasing

time and concentration of doxycycline (Figure S1F). Together,

these data demonstrate that CARLIN is edited in an inducible

way with the extent of editing dependent both on the duration
Cell 181, 1410–1422, June 11, 2020 1411
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Figure 1. A High Diversity of Edits Are Generated by CARLIN in Embryonic Stem Cells

(A) Schematic of CARLIN system. Guide RNAs (gRNAs), target sites, and inducible Cas9 components are contained within the Col1a1 locus. The expression of

each of the 10 gRNAs is driven by a separate U6 promoter (pU6). The CARLIN array sits in the 30UTR of GFP and consists of 10 sites that perfectly match the

gRNAs. The doxycycline (Dox) reverse tetracycline-controlled transactivator (rtTA) is contained within the Rosa26 locus. Schematic created with BioRender.

(B) For computational purposes, we consider the CARLIN array as a series of motifs. We divide each target site into a 13-bp conserved site (that lies outside the

expected range of Cas9 editing) and 7-bp cutsite. Consecutive target sites are interleaved by a 3-bp protospacer adjacent motif (PAM) and 4-bp linker sequence.

There is a 5-bp prefix motif upstream of the first target site and an 8-bp postfix motif downstream of the last target site.

(C) The 50 most-common edited CARLIN alleles generated in CARLIN mouse embryonic stem cells (ESCs) after 96 h induction with 0.04 mg/mL Dox. Each row

represents a different allele. Deletions are marked in red. Insertions are shown in blue with the left endpoint indicating the start of the insertion; the length of the

stripmatches the length of the insertion (except when occluded by a subsequent deletion). A grayscale mask as in (B) is overlaid to demarcate the CARLINmotifs.

(D) The fraction of edited ESCs, after 96 h induction with 0.04 mg/mL of Dox, in which insertions and deletions of various lengths are observed.

(E) Distribution of mutation types across different target sites in ESCs after 96 h induction with 0.04 mg/mL of Dox.

(F) Chord plots of CARLIN alleles before induction and at 12 h, 24 h, and 48 h after induction with 0.04 mg/mL of Dox. The shading of the iris (ccw. from top)

corresponds to the shading of the motifs in Figure 1B (from left to right). The thickness of an interior line is proportional to the number of cells with that mutation.

The endpoints of a red line indicate the starting and ending bp of a deletion. The upstream endpoint of a blue line indicates the insertion site, and the downstream

endpoint is offset by an amount equal to the insertion length.

(G and H) Time course of the total number of distinct alleles detected normalized by the total number of cells (G), and (H) average CARLIN potential (STAR

Methods) across cells in the absence of Dox and after induction with 0.04 mg/mL (low), 0.2 mg/mL (medium), and 1 mg/mL (high) of Dox.
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and magnitude of the induction, indicating that the system can

be used as a heritable molecular recorder.

Sequential CARLIN Induction Permits Lineage
Reconstruction
Having shown that we could regulate the extent and nature of

editing, we next tested whether we could accrue sequential edits

on the same CARLIN array. CARLIN ESCs were exposed to one,

two, or three 6-h pulses of Dox (0.04 mg/mL) interspersed by 24 h

in freshmedia. Indeed, we observed an increase in the fraction of

cells with edited CARLIN alleles, the number of mutations

accrued in each allele, and the diversity of CARLIN alleles over
1412 Cell 181, 1410–1422, June 11, 2020
the three pulses (Figures 2A and S1G). This finding indicates

that sequential pulses of Dox can incorporate additional informa-

tion and can potentially be used to build multi-level, hierarchical

histories for lineage reconstruction. To test this last hypothesis,

we exposed ESCs to one pulse of Dox, picked 8 ESC clones

for outgrowth, and exposed them to a second pulse of Dox (Fig-

ure 2B). Sanger sequencing of the 8 ESC clones after the first

time point allowed us to establish a ‘‘ground truth’’ of edits

generated after the initial pulse (Figure 2C). We devised a basic

lineage tree reconstruction algorithm that accounts for the ex-

pected CARLIN mutation patterns and assumes that the internal

nodes are restricted to the observed alleles (Figure 2D; STAR
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Figure 2. Multiple Pulses of Doxycycline Can Consecutively Label Lineages and Enable Phylogenetic Tree Reconstruction in ESCs

(A) Chord plots of CARLIN alleles in the absence of doxycycline (Dox) and after one, two, or three 6-h pulses of Dox (R0–R3, respectively). Color scheme as in

Figure 1F.

(B) Following one 6-h round of Dox induction, cells were seeded at single-cell density and 8 colonies were picked for further outgrowth and Sanger sequencing.

Following a second round of Dox, DNA from cells was collected and sequenced by next generation sequencing (NGS). Schematic created with BioRender.

(C) Mutations called in each of the 8 colonies from the CARLIN pipeline applied to the Sanger sequences. Colonies are colored according to the schematic in (B).

Colonies 5, 7, and 8 share a common mutation.

(D) Left: the consensus tree, accounting for 95% of cells, obtained from 10,000 lineage reconstruction simulations applied to alleles pooled from all libraries

(Figure S4C; STARMethods). The color of a node and its branch to a parent corresponds to the NGS library in which the allele was observed. Leaves that connect

to internal nodes of a different color correspond to false positives. Center: sequence of each CARLIN allele visualized as in Figure 1C. Right: histogram of the

number of cells in which each allele was detected. Colored bars correspond to NGS sequences that match a Sanger sequence.
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Methods). Applied to these data, we achieved a false-positive

rate of 0.6% (the fraction of cells in which the most recent

ancestor of an allele is a clone other than where the allele

came from) and a false-negative rate of 18% (the fraction of cells

in which none of the 8 selected clones is found as an ancestor of

an allele). False-negatives arise when alleles from a specific next

generation sequencing (NGS) library cannot be matched to a

parent clone because of large subsuming deletions that erase

the mutations that uniquely identify the parent allele. In these

cases, we always link the child allele back to the unedited refer-

ence, to avoid false positives. Taken together, sequential Dox

pulses allow multiple stages of lineage reconstruction.

CARLIN Generates a High Diversity of Barcodes In Vivo

We next generated mice carrying the CARLIN transgenes and

assessed allele generation after Dox induction in adults.

Because dose and timing of Dox concentration is critical to

induce editing in a large fraction of cells, we tested multiple

dosing regimes of Dox (not shown) and selected a protocol in

which CARLIN mice were exposed to Dox for 7 days (STAR
Methods). Following this protocol, we harvested RNA from mul-

tiple tissues from CARLIN mice for bulk sequencing of the

CARLIN array (Figure 3A). We observed that the fraction of

CARLIN transcripts that were edited ranged from 31% to 88%

across all tissues analyzed, with the exception of the brain,

that is inaccessible to Dox, and the heart and skeletal muscle,

in which expression from the Col1a1/Rosa26 loci has been pre-

viously shown to be low (Beard et al., 2006) (Figures 3B andS3A).

To investigate editing in different cell types, we sorted blood,

mesenchymal, and epithelial cells from a variety of tissues in

two inducedmice and assessed the fraction of edited transcripts

by RNA sequencing. Similar to our bulk tissue data, we observed

robust editing in the presence of Dox across multiple cell types

and tissues (Figure S3B). Importantly, background editing in

the absence of Dox is negligible (averaging 1%) across all tissues

of an uninduced 8-week-old mouse (Figure 3B). Therefore,

CARLIN represents a useful model to barcode adult tissues

systematically.

We next assessed the full extent of the barcode diversity that

could be generated in vivo. For this, we compared CARLIN edits
Cell 181, 1410–1422, June 11, 2020 1413



Figure 3. Inducible CARLIN Editing In Vivo

(A) 8-week old mice were induced with doxycycline (Dox) for 1 week. RNA from granulocytes and other tissues were collected after 3 days chase. Schematic

created with BioRender.

(B) Fraction of transcripts edited across tissues in the presence and absence of Dox.

(C) The 50 most common edited CARLIN alleles observed in granulocytes, visualized as in Figure 1C.

(D) Distribution of mutation types across different target sites in granulocytes comprising the allele bank (STAR Methods).

(E) Histogram of insertion and deletion lengths found in the allele bank shaded according to presence across mice.

(F) Venn diagram showing number of edited alleles (and the corresponding number of edited transcripts) in the bank shared across the three induced mice.

(G and H) Non-parametric (G) and parametric (H) extrapolation of the total allele diversity achievable by the CARLIN system as a function of the number of edited

transcripts observed (STARMethods). The system is estimated to saturate at an allele diversity of 44,000 ± 400. The area shaded in gray indicates the number of

observed transcripts used to construct the bank.

(I) Number of cells expected to harbor rare alleles (that are unlikely to occur independently in multiple cells) as a function of the number of cells edited. When the

number of cells is small with respect to the CARLIN diversity (shaded in green), many cells harbor rare alleles. As the number of edited cells increases (shaded in

red), the probability that a given allele marks only one cell decreases (orange curve), so that the number of cells that are uniquely marked with a CARLIN allele

decreases (blue curve). In the regime shaded in gray, no cell can confidently be said to be uniquely marked by an allele (STAR Methods).
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observed in large numbers of bone marrow granulocytes across

three induced CARLIN mice after 1 week of Dox induction and

two uninduced controls. Similar to our in vitro analysis, we de-

tected a high diversity of edits in the induced mice generated

through deletions and insertions across the length of the array

(Figures 3C–3E). Across the inducedmice, we observed the frac-

tion of edited CARLIN transcripts ranging 29%–63%, compared

to an average of 2.1% editing in the two uninducedmice (Figures

S3C and S3D). The editing in the uninducedmice is largely attrib-

utable to a low level of background Cas9 activity rather than re-
1414 Cell 181, 1410–1422, June 11, 2020
sulting from errors introduced during library preparation,

because editing in the absence of Cas9 was 0.3% (Figure S3E).

On average, 88% of the edited alleles (6,485–11,921) found in

each mouse were not observed in the other mice (Figure 3F),

indicating that the majority of edits represent unique repair out-

comes. However, it also indicated that a small percentage

(�12%) of alleles were generated at a higher frequency due to

common indel mutation events (such as deletions spanning mul-

tiples of 27 bp noted earlier) that independently generate the

same allele sequence in different cells (Figure 3E). We pooled
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the edited alleles from across all induced mice together to form

an allele bank, consisting of a total of �32,000 distinct edited al-

leles over �233,000 edited transcripts.

We used the allele bank to computationally estimate the total

number of distinct alleles that CARLIN could generate (i.e., the

maximum barcode diversity) and the expected occurrence fre-

quency of these alleles. High diversity corresponds to many al-

leles that occur at equal frequencies. Conversely, low diversity

corresponds to few dominant alleles that occur at high fre-

quencies. By extrapolating the frequency distribution of alleles

in the bank, we estimate that CARLIN is able to generate up to

44,000 ± 400 distinct alleles (Figures 3G and 3H; STAR

Methods), consistent with a high diversity system. Additionally,

we used the bank to discriminate between rare alleles that occur

at low frequencies and commonly occurring alleles. To do so, we

used the allele bank to estimate the probability that a CARLIN

allele is unique for a given number of observed cells, obtaining

a p value of significance (Figure 3I; STAR Methods). The curves

in Figure 3I can be used by an experimentalist to determine how

many cells will be uniquely marked for a given number of edited

cells. This discrimination is critical for any experiment to ensure

that an allele detected in many cells is due to the shared lineage

history of those cells, as opposed to independent CARLIN edit-

ing events that coincidentally produced the same allele. We also

verified that alleles deemed rare by our statistical procedure are

less likely to occur simultaneously across biological replicates

(Figure S4A). Critically, these statistical measures can be

adjusted to account for other experimental parameters (such

as number of cells in the system, number of detected CARLIN al-

leles, etc.) and may be applied to other CARLIN experiments.

Finally, we also investigated edited alleles generated in granu-

locytes of iCARLINmice, in which the expression of the sgRNAs,

aswell as Cas9, is driven by a tetO promoter (Figure S1B). Similar

to the constitutive guide CARLIN system, we observed a high di-

versity of edits (Figure S3F), indicating that this system may be

used aswell to label cells with even tighter inducibility and poten-

tially shorter labeling windows.

Lineage Reconstruction In Vivo

To investigate whether multiple rounds of CARLIN labeling could

be used to gain insight into cellular phylogeny in vivo as done

in vitro (Figure 2D), we set up timed pregnancies and delivered

three pulses of Dox to pregnant dams at embryonic day (E)6.5,

E9.5, and E13.5 (Figure 4A). When the 3x-labeled CARLIN em-

bryos reached 8 weeks of age, we collected RNA from the

skin, heart, liver, intestine, and colon, and also separately

sampled the left and right brain, muscle, lung, and bone marrow

HSCs, multipotent progenitors (MPPs), granulocytes (Gr), and B

cells. We employed the same tree reconstruction algorithm

developed for analyzing the in vitro experiment with ESCs (Fig-

ure 2D). However, as a pre-processing step, we only retained al-

leles whose observed frequency was significantly higher than

their frequency in the bank (using a false discovery rate

[FDR] = 0.05 on their frequency p values) (Figure 4B; STAR

Methods). Only a small fraction of CARLIN transcripts was dis-

carded based on this filtering step across all tissues (Figure 4C).

We computed a consensus lineage tree, by simulating 10,000

stochastic reconstructions (STAR Methods), which allowed us
to visualize a hierarchy of clades across multiple tissues (Figures

4D–4G; STAR Methods). Based on this lineage tree, we

computed a pairwise similarity matrix of the tissues and

observed that contra-lateral tissues were closely related, as

were multiple cell types of hematopoietic origin, and tissues of

endodermal origin (Figure 4H), which is consistent with known

lineage relationships. We also observed a low level of allele

sharing across other tissues, some of which were derived from

the same embryonic germ layer (Figures 4F and 4H). This indi-

cates limited lineagemixing between these tissues and suggests

that they began to develop independently prior to the stages of

induction used in our analysis. Taken together, CARLIN can be

useful for multi-level tissue reconstruction in vivo.

Simultaneous Detection of CARLIN Barcodes and
Whole-Transcriptomes from Single Cells
We next set out to develop a platform to detect CARLIN alleles

using single-cell sequencing technologies. Our pipeline for this

analysis involves: (1) exposure of mice to Dox, (2) encapsulation

of single cells from the cellular population of interest (here we

consider cKit+ cells from the bone marrow [Figure S5A and

S5B]) into droplets containing barcoded polyT-coated beads,

(3) amplification of whole cellular transcriptome, (4) targeted

amplification of the CARLIN array, and (5) sequencing using

NGS (Figure 5A). After optimization, we were able to detect

CARLIN in 32%–63% of cells in which we could also measure

a full transcriptional profile (for the criteria used to select single

cells, see Table S4 and STAR Methods). To check for reproduc-

ibility of our protocol, we prepared two CARLIN amplicon li-

braries independently starting from the same single-cell tran-

scriptome library. We observed that 89% of the cell barcodes

were shared across the two libraries. We also verified that the

same CARLIN alleles occurred across the two samples with

consistent frequencies (Figure S6A; STAR Methods).

As a proof-of-principle experiment, we used CARLIN to char-

acterize clonal properties of hematopoietic development. Here,

we barcoded HSC precursors during embryogenesis and char-

acterized their clonal lineages in adulthood. In the mouse, defin-

itive blood progenitors arise at E10.5 with the formation of

Runx1-expressing clusters within themain arteries of the embryo

(Dzierzak and Bigas, 2018). From E11 onward, these progenitors

migrate to the fetal liver where they undergo extensive expansion

before colonizing the bone marrow at around the time of birth.

Although several studies have investigated the process through

which the progenitors are formed, the dynamics of HSC expan-

sion andmigration to the bonemarrow are still poorly resolved. In

particular, it is unclear whether HSCs derived from the same

developmental precursor clone already exhibit intrinsic func-

tional biases.

We applied a single pulse of Dox at E9.5 to label the earliest

emerging definitive blood progenitors (Figure 5A). Accounting for

delays in Dox response and Cas9-protein stability (Alemany

et al., 2018; Traykova-Brauch et al., 2008), this represents actual

labeling times of approximately E10–E12.5. Once the labeled ani-

mals reached 8 weeks of age, we sorted a combination of cKit+

progenitors, including HSCs, MPPs, and lineage-restricted pro-

genitor cells (Figure S5A) from four separate bones (right and left

humerus and femur) and encapsulated the cells from each bone
Cell 181, 1410–1422, June 11, 2020 1415



Figure 4. Lineage Reconstruction In Vivo through Multiple Pulses of Doxycycline

(A) Pregnant dams were induced with doxycycline at E6.5, E9.5, and E13.5. At 8 weeks, RNA from different tissues was collected and sequenced by NGS.

Schematic created with BioRender.

(B) Scatterplot of observed allele frequencies versus expected frequencies obtained by querying the bank. Alleles whose statistical significance did not survive a

FDR of 0.05 were discarded (STAR Methods).

(C) Number of edited transcripts found in different tissues after running the CARLIN pipeline (All) and after screening for significant alleles (Sig) as described in (B).

(D) The consensus tree that accounts for 95%of edited transcripts, obtained from 10,000 simulations, using the same algorithm as in Figure 2D (Figure S4D; STAR

Methods).

(E) Allele sequences called from NGS corresponding to the leaf nodes, visualized as in Figure 1C.

(F) Distribution of number of transcripts corresponding to each allele across tissues (row normalized to 1).

(G) Histogram of total transcript counts across all tissues for each allele.

(H) Pairwise similarity matrix of tissues computed across alleles of the consensus tree (STAR Methods).
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into separate single-cell libraries. We combined the 3,755–5,261

cells per bone that passed quality control cutoffs (Table S4;

STARMethods) into one dataset encompassing 19,056 cells (Fig-

ure S5C). Unsupervised hierarchical clustering resulted in 36

distinct clusters that we annotated as HSC,MPP, myeloid, mega-

karyocyte, erythroid, and lymphoid using previously described

markers (Figures 5B, S5D, and S5E). We considered cells

belonging to theHSC-likeclusters tobeHSCs, andcells belonging
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to other clusters to be non-HSCs for all subsequent analysis.

Finally,we visualized the single-cell geneexpressionprofiles using

uniform manifold approximation and projection (UMAP) plots,

overlaid with the detected CARLIN alleles (Figure 5C).

From a total of 60 clones, eachmarkedwith a different CARLIN

allele, our high-stringency analysis determined 46 (20–29 in each

bone) to be significant (assessed using their clonal p value at a

FDR = 0.05) (Table S4; STAR Methods). We restricted all further



Figure 5. Clonal Tracing of Blood Progenitors

to Adulthood

(A) CARLIN mice were labeled at E9.5. At 8 weeks,

bone marrow cells were collected, sorted, and

encapsulated for single-cell RNA sequencing.

Schematic created with BioRender.

(B) UMAP representation of pooled transcriptome

data from the bonemarrow of 4 separate bones. See

Figures S5D and S5E for the breakdown of clusters

and markers used for annotation. HSC, hemato-

poietic stem cell; MPP, multipotent progenitor cell;

My, myeloid progenitor cells; Ery, erythrocyte; Ly,

lymphoid cell.

(C) Statistically significant CARLIN alleles (FDR =

0.05; STAR Methods) across all bones combined,

overlaid onto the UMAP plot from (B). The green

shaded area corresponds to the HSC cluster in the

transcriptome, shown in (B). We are able to directly

map the ancestry between differentiated cells (green

diamonds) and HSCs (green circles) which share the

same set of alleles. HSCs without children are

shown in blue, and differentiated cells that do not

share their allele with HSCs are shown in yellow.

(D) CARLIN clones overlaid onto the transcriptome

of individual bones; a non-biased clone (blue) and a

biased clone (red) are shown with the Bonferroni-

corrected p values for bone bias (STAR Methods).

(E) Left: bar graph indicating the prevalence of each

statistically significant allele across the 4 bones, with

the Bonferroni-corrected p value for bone bias

marked as *p < 0.05; **p < 10�3; ***p < 10�6. Right:

heatmap indicating occurrence frequency of alleles

across bones and cell types. Alleles found in fewer

than 4 cells are not displayed. The clone labels

follow the color scheme in (C).
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analysis to these significant clones. The sizes of these clones

ranged from 1 to 123 cells comprising numerous cell types

across the hematopoietic hierarchy. We initially assessed the

extent to which clones that contained HSCs (HSC-rooted

clones) also contained hematopoietic progeny (non-HSCs). Pre-

vious studies suggest that hematopoiesis is driven by HSCs that

are progeny of definitive embryonic precursors (Dzierzak and

Bigas, 2018). Indeed, we find that 23 out of 27 clones containing

an HSC have detectable hematopoietic progeny (we refer to

these HSCs as parent HSCs). Such HSC-rooted hematopoietic

progeny make up most of the cellular composition in the

analyzed bone marrow samples, i.e., 95% of non-HSCs display-

ing a significant CARLIN allele (p < 10�6) (Figure 5C; STAR

Methods). Interestingly, we observed that the distribution of

HSC-rooted clone sizes was significantly non-uniform (p <

10�6; Figure 5E; STAR Methods). This finding points toward sig-

nificant heterogeneity across embryonic-derived HSCs.
We next separated out the transcriptional

and lineage profiles of cells across the four

bones (Figure 5D). With this analysis, we

could assess both the presence and

behavior of HSCs across multiple bone

marrow compartments. We observed 13 of

the 46 significant clones in all bones, ac-

counting for 46% of cells displaying an edi-
ted CARLIN allele (Figure 5E). Notably, across all clones, we

observed thatmanyof the largest cloneswerenotuniformlydistrib-

uted across bones but were more likely to be found in a subset of

the bones analyzed (STAR Methods). For example, clone 10 ap-

peared in 49 cells of the right humerus but appeared in only 3 cells

of the left femur and was completely absent in the other analyzed

bones (p < 10�6) (Figures 5D and 5E). Similarly, clone 3 appeared

in 42 and 72 cells of the left and right femur, respectively, but ap-

peared in only 6 and 3 cells of the left and right humerus, respec-

tively (p < 10�6) (Figure 5E). No clone had a statistically significant

fate bias, as judged by its occurrence among cell types as defined

in Figure 5B, either within bones or pooled across all bones (STAR

Methods). Assuming equal expansion in the fetal liver, our data

suggest that the expansion potential of fetal liver-derived HSCs

might not be pre-determined but that it might be conferred by the

niche intowhich theyhome. It isalsopossible that fetal liver-derived

HSCs exhibit biases in colonization of different bones.
Cell 181, 1410–1422, June 11, 2020 1417
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Clonal Bottlenecks during Hematopoietic Regeneration
Next, we applied CARLIN to investigate the clonal dynamics of

adult hematopoiesis after perturbation. Decades of work have

established that after acute myeloablation, most HSCs exit their

quiescent state and undergo cell division (Harrison and Lerner,

1991; Wilson et al., 2008). It has been assumed that these divi-

sions are asymmetric cell divisions and correspond to HSC acti-

vation, implying that most HSCs participate in regeneration.

However, this process has never been studied at a clonal level

and the extent to which each individual HSC participates in

regeneration is unclear.

To measure how much individual HSCs contribute to regener-

ation, we studied the HSC response to 5-fluorouracil (5-FU), a

widely used model of myeloablation in the mouse. 5-FU induces

proliferation of most HSCs within 4 days (Harrison and Lerner,

1991; Wilson et al., 2008) and by 10 days post 5-FU, cellularity

is recovering in the bone marrow (Harrison and Lerner, 1991).

We induced CARLIN labeling in 8-week-old mice before admin-

istering one dose of 5-FU via intraperitoneal injection (Figure 6A).

After 10 days recovery, we sorted the cKit+ population from the

marrow of single bones (Figures S5A and S5B) and generated

single-cell RNA libraries. Across five independent experiments

in control and 5-FU treated groups, we detected between

4,073–6,025 cells with high resolution whole transcriptome infor-

mation (Table S4) that we compiled into one dataset following

batch correction (Figure S6B). Unsupervised hierarchical

clustering resulted in 34 distinct clusters to which we

assigned coarse-grain annotations as before (Figures 6B, S6C,

and S6D).

As with the previous experiment, we restrict our attention to

clones corresponding to significant CARLIN alleles (assessed

using their clonal p value at a FDR = 0.05) (STAR Methods). Of

the 1,619 statistically significant alleles detected across sam-

ples, 1,580 were unique and found only in one sample, corrobo-

rating that our filtering procedure for rare alleles was effective.

We detected important differences in the clonal composition of

control versus 5-FU-treated bone marrow. First, we observed

a significant reduction in the number of clones detected in the

5-FU-treated marrow (p < 10�6) (Figures 6C and S6E; STAR

Methods), which likely reflects the massive cellular and clonal

loss after injury. Additionally, we used CARLIN to analyze the

clonal contribution of HSCs to hematopoietic production. In

the absence of 5-FU, only 24 of 1,330 clones across all samples,

representing 65 of 1,522 (4%) edited CARLIN cells, contained

both hematopoietic progeny and HSCs (Figures 6C, 6D, 6F,

S6E, S6F, and S6H). This suggests minimal contribution of

HSCs at steady state, at least over 20 days, consistent with other

studies (Busch et al., 2015; Sun et al., 2014). In the presence of 5-

FU, this landscape was significantly altered with 48 of 289 clones

containing both hematopoietic progeny and HSCs (p < 10�6)

(STAR Methods), representing 217 of 695 (31%) of cells carrying

an edited CARLIN allele (p < 10�6) (Figures 6D, 6F, S6F, and S6H;

STAR Methods). Additionally, there was a significant increase in

the average size of HSC-rooted clones (p = 7.5 3 10�6) (Figures

6E and S6G; Table S5; STAR Methods). Surprisingly however,

the distribution of the sizes of the HSC-rooted clones was signif-

icantly non-uniform (STAR Methods), with 12 of 92 HSC clones

making up 45% of all cells in HSC-rooted clones in the first 5-
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FU treated mouse (p < 10�6) (Figure 6E) and 4 of 19 HSC clones

making up 67% of all cells in the HSC-rooted clones in the sec-

ond 5-FU treated mouse (p = 5.2 3 10�3) (Figure S6G). These

findings indicate that a small number of highly active HSCs are

responsible for the replenishment of the blood system following

cytotoxic injury. Therefore, our results indicate a clonal bottle-

neck during regeneration where only a handful of HSC clones

can generate productive flow into the MPP and downstream

compartments.

CARLIN Allows the Identification of Gene Signatures
Underlying Functional Heterogeneity
As highlighted above, current clonal tracing models (Sun et al.,

2014; Pei et al., 2017) in the hematopoietic system are able to

identify heterogeneity in function. However, these studies cannot

provide any molecular insight into potential drivers of function in

HSCs. We explored whether CARLIN could allow us to identify

gene signatures specific to the ‘‘active’’ HSC state. Initially, we

performed differential gene expression analysis comparing the

parent HSCs (n = 93) to childless HSCs (n = 265) across the con-

trol and 5-FU single-cell datasets (Table S6). After applying a

Bonferroni correction, 27 genes showed a statistically significant

change at a log-fold change cutoff of 0.2 including CD48 and

Plac8. To increase the number of cells used for the differential

analysis, we took advantage of our observation that, as visual-

ized using UMAP, the parent HSCs were not uniformly spread

across the HSC clusters (Figures 6B, 6D, and S6F). To delineate

the parent HSC region, we grouped the HSC clusters into a

parent HSC cluster group and a childless HSC cluster group,

such that the former contained a significantly larger fraction of

parent HSCs (p = 4.2 3 10�4) (Figure S6C; STAR Methods). Dif-

ferential gene expression analysis across these two cluster

groups revealed 45 significantly different genes, in addition to

CD48 and Plac8 (Figures 6G, 6H, S6I, and S6J; Table S6).

Some of these genes have known involvement in HSC quies-

cence/activity (Mllt3, Cd34, Pdzk1ip1) (Forsberg et al., 2010;

Wilson et al., 2008; Calvanese et al., 2019), hematopoietic differ-

entiation (Mpo and CD48), and cell proliferation (Cdk6, Plac8)

(Rogulski et al., 2005), as well as a number of genes with

described but poorly defined links to hematopoiesis (e.g.,

Nkg7) (Wilson et al., 2015). The grouping of HSC clusters into

parent and childless HSC cluster groups could not have been

achieved without taking into account the relative prevalence of

parent HSCs in each cluster as determined by CARLIN, because

HSCs overexpressing proliferationmarkers did not localize in the

parent HSC cluster group (STAR Methods). Additionally, HSCs

overexpressing proliferation markers were also not significantly

over-represented among parent HSCs as determined by

CARLIN. Last, partitioning HSCs according to expression of

these proliferation markers alone, and performing a differential

gene expression analysis between the subsets that most highly

and lowly expressed these markers, also failed to identify any

of the aforementioned genes, with the exception of Cdk6 (Table

S6; STAR Methods). Taken together, these data demonstrate

that the combined analysis of lineage and gene expression pro-

files can in principle identify molecular profiles underlying hetero-

geneous HSC behavior in vivo, without a need for a priori known

markers or cell sorting.



Figure 6. Clonal Dynamics of Adult Hematopoiesis following Perturbation

(A) 8-week old CARLIN mice were labeled with doxycycline and injected with 5-FU after 10 days. After another 10 days, bone marrow cells were sorted and

encapsulated for single-cell RNA sequencing. Schematic created with BioRender.

(B) UMAP representation of pooled transcriptome data from control and 5-FU treatedmice. See Figures S6C and S6D for the breakdown of clusters andmarkers

used for annotation. Cluster labels as in Figure 5B.

(C) Number of statistically significant clones in the first control and 5-FU treatedmouse (FDR = 0.05; STARMethods) after downsampling the 5-FU treated mouse

to have the same number of cellsmarked by statistically significant alleles as the control mouse. The control mouse hasmany small clones. The colors correspond

to the legend for (D) below with blue clones containing only HSCs, yellow clones containing only non-HSCs, and green clones containing both.

(D) Statistically significant CARLIN alleles (as defined in C) overlaid onto the transcriptome indicating childless HSCs (blue), parent HSCs (green circles), non-HSC

cells in an HSC-rooted clone (green diamonds), and non-HSC cells not in an HSC-rooted clone (yellow). The green shaded area corresponds to the HSC cluster in

the transcriptome shown in (B).

(E) Violin plot showing the distribution of the number of cells in statistically significant HSC-rooted clones (as defined in C) in the first control and 5-FU treated

mouse (the green and blue markers in D). The total number of cells in statistically significant HSC-rooted clones is shown in brackets under the sample label.

(F) Heatmap indicating occurrence frequency of statistically significant alleles (as defined in C) across different cell types in the first control and 5-FU animals. The

clone labels are colored according to the scheme in (D). The number of clones has been downsampled for both animals.

(G) Violin plots of log-normalized expression levels of selected genes differentially expressed between the parent and childless HSC cluster group (as defined in

Figure S6C).

(H) Heatmap of the Z score of log-normalized expression levels of genes most differentially expressed between the parent and childless HSC cluster group (as

defined in Figure S6C).
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DISCUSSION

Here, we present CARLIN, a new resource for lineage tracing

research that can be used to simultaneously interrogate lineage

histories and gene expression information of single cells in the

mouse in an unbiased, global manner. We have demonstrated

that CARLIN mice can be used to generate up to 44,000 distinct
CARLIN alleles (barcodes) in vivo, and these alleles can be de-

tected and read out using single-cell droplet sequencing along-

side the transcriptome of individual cells. We also demonstrated

that multiple pulses of labeling can be used to enhance our un-

derstanding of tissue phylogeny.

CARLIN has a number of unique advantages over existing

mouse lines for in vivo lineage tracing. Unlike models that use
Cell 181, 1410–1422, June 11, 2020 1419
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Polylox (Pei et al., 2017) or Sleeping Beauty transposons (Sun

et al., 2014), the barcodes generated by CARLIN are transcribed,

enabling (1) high-throughput readout of lineage histories in single

cells, and (2) simultaneous measurement of gene expression

profiles in the same cells. Because of this, we can characterize

the identity of the cells that have been traced using their gene

expression profiles in a precise and unbiased fashion. In

contrast, existing techniques sort cells into subpopulations

based on known cell types before readout of lineage histories.

This requires prior knowledge of the markers associated with

each cell type of interest and existence of antibodies that can

enrich for these subpopulations. Strategies that rely on cell-

type-specific expression of fluorescent reporters require costly

and time consuming genetic engineering. Evenwith available es-

tablished cell-sorting strategies, resulting cell purity is limited

and cells can be lost during sorting. Critically, CARLIN can be

used to read out the lineage histories of any cell type, in any tis-

sue and organ, even in the absence of known cell surface

markers for sorting. Therefore, CARLIN enables precise annota-

tion of cell types whose lineage has been traced beyond what

can be gleaned from cell surface markers alone. Complete

gene expression profiles also provide information about mecha-

nisms that drive cell behavior. Finally, CARLIN can directly quan-

tify clone sizes by counting the occurrence frequency of barco-

des across individual cells. Existing methods rely on bulk

sequencing and are therefore less accurate because of PCR

amplification biases.

Innovations that have increased our ability to both modify and

detect DNA sequences in single cells has led to sophisticated

lineage tracing systems based on CRISPR-Cas9 gene editing,

with recent implementations in mice (Chan et al., 2019; Kalhor

et al., 2018). In these previously described models, constitutive

Cas9 expression generates evolvable barcodes in hundreds of

random genomic target sites. Our system offers a number of ad-

vantages over these previously described models. First, our sys-

tem is inducible, allowing cells to be barcoded at precise time

points. Second, all transgenic elements in CARLIN mice are con-

tained in defined genomic loci, enabling straightforward crossing

into alternative genetic backgrounds and minimizing damage

caused by continuous double-strand DNA breaks. Third,

CARLIN mice represent a stable and practical mouse line that

can be utilized by others in the scientific community, avoiding

the use of zygote microinjection or complex mouse crosses.

Finally, we have created a bank of alleles and statistical methods

to create a confidence score for each allele, allowing us to quan-

tify the statistical significance of alleles that are shared across

multiple cells.

We have used CARLIN to shed light on two aspects of hema-

topoiesis. First, we applied our tool to track early blood progen-

itor clones to adulthood. A surprising observation was that the

majority of the largest clones detected exhibited significant

bias in their representation across the four bones analyzed.

One possible explanation for this is heterogeneity in the niche en-

vironments resulting in different seeding success and subse-

quent expansion (Gao et al., 2018). Alternatively, our data could

indicate that only a subset of HSCs in the fetal liver expand or

seed the bone marrow (Ganuza et al., 2017). Finally, we also

cannot rule out that migration of HSC clones during adulthood
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occurs between bones, contributing to a skewed distribution of

clones (Wright et al., 2001).

Second, we used CARLIN to analyze the clonal dynamics of

blood replenishment after chemotherapeutic lympho/myeloa-

blation. Analysis of CARLIN alleles uncovered a reduced clonal

diversity of the blood after 5-FU treatment. Furthermore, we

observed that a small number of HSCs were responsible for

replenishment of the blood. This finding is surprising given that

previous reports indicated homogeneous cycling within the

HSC compartment after 5-FU treatment (Harrison and Lerner,

1991; Wilson et al., 2008). Taken together, it is possible that 5-

FU treatment could initiate widespread cycling within the HSC

niche with only a small number of clones continuing to cycle

and contributing to downstream blood populations. Interest-

ingly, similar dynamics were observed after transplantation into

irradiated or cKit-depleted mice (Lu et al., 2019) where only a

subset of HSCs replenished the blood, suggesting that skewed

blood production from HSCs could be a generalized response

to hematopoietic stress. Differential gene expression analysis

comparing these ‘‘active’’ HSCs with their ‘‘inactive’’ counter-

parts revealed increased expression of cell proliferation and

cell differentiation genes among others; of particular interest is

Plac8 that has been previously implicated in proliferation (Rogul-

ski et al., 2005), host defense (Ledford et al., 2007), and has

reduced expression in aged HSCs (Mann et al., 2018). Our iden-

tification of a potential new candidate gene involved in the regu-

lation of HSC quiescence/activation highlights the value of using

CARLIN to interrogate the molecular drivers underlying the het-

erogeneous clonal output of HSCs.

Our method can potentially be improved in several ways. First,

while our diversity estimates have established the maximum di-

versity of the CARLIN system to be�44,000 alleles, which is suf-

ficient for many applications, higher diversity may be desired

when analyzing whole adult tissues. Diversity of the system

could be increased through simple modifications such as use

of homing gRNAs (Kalhor et al., 2018) or combining the system

with Cre-based tracing lines. Second, the current iteration of

CARLIN can result in a limited fraction of cells edited (16%–

74% of cells have edited CARLIN alleles across our single-cell

datasets). Editing efficiency could potentially be increased by

optimizing the timing and/or dose of doxycycline. Third, a

CARLIN capture rate of 32%–63% (fraction of cells in which

CARLIN was detected across our single-cell datasets) may be

limited by low expression/stability of CARLIN RNA, transcrip-

tional bursting from the promoter used, or errors in PCR/

sequencing resulting in loss of reads in silico. Incorporating

CARLIN into loci that aremore highly expressed, using additional

CARLIN arrays, or further optimizing the promoter or RNA stabi-

lization sequences could potentially circumvent these defi-

ciencies and increase the fraction of cells fromwhich lineage his-

tories can be extracted.

Finally, this work, among others (Alemany et al., 2018; Chan

et al., 2019; Frieda et al., 2017; Kalhor et al., 2018; Raj et al.,

2018; Spanjaard et al., 2018), represents a proof-of-principle

study for the robust recording of cellular information using

genome editing. In principle, CARLIN can be extended so that

Cas9 expression is controlled by environmentally sensitive pro-

moters rather than doxycycline. Such a system could record
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histories of specific stimuli such as pathogen exposure, nutrient

intake, and signaling activity, in addition to lineage.
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Platinum Taq Polymerase Invitrogen Cat#: 10966-034

Q5 polymerase New England Biolabs Cat#: M0491

dNTPs New England Biolabs Cat#: N0446

Trizol Invitrogen Cat#: 15596018

PhiX Control v3 Illumina Cat#: FC-110-3001

Critical Commercial Assays

AMPure XP beads Beckman Coulter Cat#: A63881

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

SPRIselect reagent Beckman Coulter Cat#: B23318

Dynabeads kilobaseBINDER Kit Invitrogen Cat#: 60101

MACS Separation Columns Miltenyi Biotec Cat#:130-042-401

Chromium Single Cell 30 Library & Gel Bead

Kit v2

10x Genomics Cat#: PN-120267

Chromium Single Cell 30 Library & Gel Bead

Kit v3

10x Genomics Cat#: PN-1000075

Chromium i7 Multiplex Kit 10x Genomics Cat#: PN-120262

MiSeq Reagent Kit v2 (500 cycles) Illumina Cat#: MS-102-2003

NextSeq 500/550 High Output Kit v2.5 (150

Cycles)

Illumina Cat#: 20024907

Deposited data

Raw and processed data This paper GEO: GSE146972

Experimental Models: Cell Lines

KH2 mESCs Beard et al., 2006 N/A

CARLIN/Cas9 mESCs This paper N/A

Experimental Models: Organisms/Strains

Mouse: B6;129S4-Gt(ROSA)

26Sortm1(rtTA*M2)Jae Col1a1tm1(tetO-cas9)Sho/J

Stuart H Orkin Cat# JAX:029415, RRID:

IMSR_JAX:029415

Mouse: B6;129S4-Gt(ROSA)

26Sortm1(rtTA*M2)Jae Col1a1tm1(iCARLIN)

This paper N/A

Mouse: B6;129S4-Gt(ROSA)

26Sortm1(rtTA*M2)Jae Col1a1tm1(cCARLIN)

This paper N/A

Oligonucleotides

Primers, see Table S1 IDT N/A

Recombinant DNA

Plasmid: pBS31-cCARLIN This paper N/A

Plasmid: pBS31-cCARLIN This paper N/A

Plasmid: pCAGGS-FLPe-puro Buchholz et al., 1998 N/A

Plasmid: pBS31 targeting vector Beard et al., 2006 N/A

Plasmid: pU6-(BbsI)_CBh-Cas9-T2A-

mCherry

Addgene RRID: Addgene_64324

Plasmid: FgH1tUTG donor plasmid Addgene RRID: Addgene_70183

Software and Algorithms

CellRanger v3.0.2 10x Chromium https://support.10xgenomics.com/

single-cell-gene-expression/software/

overview/welcome

PEAR v0.9.11 Zhang et al., 2014 https://www.h-its.org/downloads/

pear-academic

MATLAB 2019a MathWorks https://www.mathworks.com/downloads/

CARLIN Pipeline This paper https://gitlab.com/hormozlab/carlin

CatchAll v4.0 Bunge et al., 2012 http://www.northeastern.edu/catchall/

downloads.html

Seurat v3.1.2 Stuart et al., 2019 https://satijalab.org/seurat

BioRender BioRender https://biorender.com/

FlowJo FlowJo, LLC https://www.flowjo.com/solutions/flowjo/

downloads
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Fernando

Camargo (fernando.camargo@childrens.harvard.edu).

Materials Availability
Plasmids generated by this study are available upon request. Mouse lines generated by this study are available upon request and will

be deposited to The Jackson Laboratory.

Data and Code Availability
The accession number for the sequencing data reported in this paper is NCBI GEO: GSE146972. The CARLIN software package,

together with the allele bank, is available at https://gitlab.com/hormozlab/carlin. Instructions and code to reproduce all results, nu-

merics and figures in the paper can be found at https://gitlab.com/hormozlab/cell_2020_carlin.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
8-12-week-oldmice (Musmusculus) were used in all the experiments unless noted in the text or figure legends. Bothmale and female

mice were used indistinctly as we have not observed any difference associated with sex in the biological processes studied; mice

were randomly assigned to the different experimental groups in the experiments shown. CARLIN and Cas9 mice were derived

from the KH2 mouse embryonic stem cell (ESC) line, with a mixed C57BL/6 3 129 genetic background. Experimental mice used

in this study were from F2/F3 generations resulting from the breeding of F1-C57BL/6 3 129 with the tetO-Cas9 mice (also mixed

C57BL/6 3 129 genetic background). All mice were maintained in standard conditions of housing and husbandry at Boston Chil-

dren’s Hospital, and all the procedures involving animals were approved by the Boston Children’s Hospital Institutional Animal

Care and Use Committee.

Cell Lines
The CARLIN mouse embryonic stem cell (ESC) line used in some experiments was derived from a male embryo from the F3 gener-

ation. Karyotype analysis was performed on the cells to ensure proper genome stability. ESCs were maintained in KO-DMEM, sup-

plemented with 15% ES-FBS, 10 ng/mL LIF and non-essential amino-acids, and grown over a mono-layer of mitomycin C-inacti-

vated mouse embryonic fibroblasts (MEFs), for the time points indicated in the results and figure legend sections. All cultures

were maintained in standard tissue culture conditions of 37�C and 5% CO2.

METHOD DETAILS

Design and Assembly of CARLIN Array
The CARLIN reference sequence was designed as an array of ten sense-oriented CRISPR-Cas9 target sites, each with a length of

20 bp and separated from each other by a 3 bp protospacer adjacent motif (PAM) sequence and 4 bp linker. In order to design a

mouse-optimized array containing 10 CRISPR/SpCas9 target sites, we started from the set of guides previously tested for the zebra-

fish GESTALT system development (McKenna et al., 2016; v6 and v7 arrays). From that set, we first excluded all target sites showing

any homology with the mouse genome. Second, we used the CRISPR design tool (http://zlab.bio/guide-design-resources) to select

guides with the strongest score factor (highest efficiency and lowest off-target) possible. Based on these criteria we preserved 6

guides from the GESTALT system and designed from scratch the other 4 using the same criteria described. To test each guide,

we cloned each one of the 10 sgRNAs individually under the control of the U6 promoter and transduced along with a plasmid con-

taining the CARLIN array into 293T cells. 48 hours after transduction we lysed cells and PCR amplified the array for fragment analysis.

All guides selected for the final design showed a similar activity in this assay.

For array synthesis, the final sequence was synthesized as a gBlock (IDT) and is provided in Table S1. The CARLIN reference

sequence was cloned into the 30-UTR region of a GFP open reading frame in an intermediate cloning vector, upstream of the

bGH-polyA sequence, and under the control of the CAG promoter to ensure robust expression.

Design and Cloning of the CARLIN sgRNA Multiplexes
10 sgRNAs perfectly matching the target sites of the CARLIN reference sequence were expressed as a multiplex, in which each

sgRNA is driven by its own promoter. We assembled two different multiplexes, one with Dox-inducible sgRNAs (iCARLIN)

(Figure S1B), and one with constitutive sgRNAs (constitutive CARLIN, used for all data in the paper with the exception of Figure S3F),

using the same Golden Gate assembly strategy. In the inducible multiplex, we used the FgH1tUTG donor plasmid (Addgene plasmid

#70183) (Aubrey et al., 2015) to clone each one of the sgRNAs using the BsmBI restriction sites, whereas in the constitutive multiplex,

we used the pU6-(BbsI)_CBh-Cas9-T2A-mCherry plasmid (Addgene plasmid #64324) (Chu et al., 2015). Then, the 10 blocks
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containing the promoter and the sgRNA were PCR-amplified using specific primers with overhangs for the Golden Gate assembly

method. The Golden Gate assembly protocol was adapted from the Addgene protocol (https://media.addgene.org/cms/files/

GoldenGateTALAssembly2011.pdf) (Cermak et al., 2011). All primer sequences are provided in Table S1.

Targeting ESCs with the CARLIN Transgene
Both the CARLIN reference sequence and the sgRNAmultiplex were cloned adjacently into the pBS31 targeting vector (Beard et al.,

2006) to target the ESCs in the Col1a1 locus. For an efficient targeting of the transgene in this locus we used the KH2 ESC line, con-

taining a donor FRT site in the Col1a1 locus, as well as the M2-rtTA transgene introduced in the Rosa26 locus to allow expression of

Dox-inducible systems. Approximately 1.5x107 KH2 ESCs were electroporated using 50 mg of the pBS31-CARLIN vector and 25 mg

of pCAGGS-FLPe-puro (Buchholz et al., 1998) at 240 V and 500 mF using a Gene PulserII (Bio- Rad, Hercules, CA). Hygromycin se-

lection (140 mg/mL) was started 24h after electroporation. The genomic DNAs from the selected clones were screened by PCR using

theCol1a1 genotyping primers (listed in Table S1). The same protocol was independently performed for the inducible and constitutive

CARLIN systems.

Mice Generation
Two targeted ESC clones were selected from each of the inducible and constitutive CARLIN systems and injected into BL/6 embryos

to form mouse chimeras. At least two chimeras with > 90% of chimerism from each ESC clone were used as founders of our exper-

imental mouse cohort. The ESCs were injected at the Mouse Gene Manipulation Core at Boston Children’s Hospital. To generate

experimental mice, descendants from the F1 of the injected ESCs were bred with Col1a1-TetO-SpCas9, generated at Stuart H. Ork-

in’s laboratory. Primers for genotyping the Col1a1 and Rosa26 loci are listed in Table S1.

Animal Procedures
Unless noted elsewhere, Dox was administered to 8-12-week-old mice via drinking water for one week (2 mg/mL supplemented with

10 mg/mL sucrose) and three intraperitoneal injections (50 mg/g) every other day. For the embryonic labeling, Dox was administered

to pregnant females via retro-orbital (RO) injection with 25 mg/g of a 10mg/mL solution of Dox at E9.5. 5-fluorouracil (5-FU) was intra-

peritoneally injected (150mg/kg) into 8-week-oldmice. To prepare 10mL of the 15mg/mL 5-FU injectable solution, the chemical was

first suspended in 500 mL NaOH 1N and then dissolved in 9.5 mL of phosphate-buffered saline (PBS). For peripheral blood extraction

(used to assess fraction of CARLIN sequences edited before performing the single-cell experiments), mice were anesthetized using

isoflurane and 2-3 capillaries were collected from the RO sinus. Following erythrocyte removal by osmotic lysis, cells were pelleted

and DNA extracted for fragment analysis.

Tissue Processing
For assessment of CARLIN barcode editing and expression in unsorted tissue samples (as in Figure 3B), samples of freshly dissected

tissue were snap frozen in liquid nitrogen before RNA purification by Trizol.

To sort epithelial andmesenchymal cells from the lung, mice were euthanized by CO2 and lungs were injected with 2U/mL dispase.

Following this, lungs were minced and incubated in 6mL 2U/mL dispase supplemented with 15 mL DNase I at 37�C for 30min with

rotation. Cells were then filtered through 40 mm strainers and centrifuged at 800 rpm, 6 min at 4�C. Staining was performed in

10% FBS/PBS with conjugated Pdgfra, EPCAM, CD45, Ter119, Mac1, and Ly6G antibodies.

To sort epithelial cells from the intestine, approximately 1-inch of intestine was flushedwith PBS and incubated in 10mL 4mMEDTA

in PBS for 40min at 4�C. After shaking, the smooth muscle layer was removed and the remaining supernatant centrifuged and resus-

pended in 10mL collagenase/dispase (Roche, 60 mL of 50mg/mL stock into 10mL PBS) and incubated at 37�C for 6 minutes. After

pipetting to dissociate single cells, the sample was centrifuged, filtered through 70 mm strainers and stained in 2% FBS/PBS with

conjugated EPCAM, CD45, Ter119, Mac1, and Ly6G antibodies.

To sort epithelial cells from the skin, hair was removed by shaving, and whole back skin removed and washed in PBS. Following fat

removal by scraping, skin was incubated in 0.25% trypsin for 1hr at 37�C. The epidermis was then removed from the dermis by razor,

minced and filtered using a 100 mm strainer to remove residual hair. The suspension was then washed twice in PBS by centrifugation

at 300 g for 15 min and stained in 2% FBS/PBS with conjugated integrin a6, CD45, Ter119, Mac1, and Ly6G antibodies.

To sort mesenchymal cells from the liver, mice were euthanized and immediately perfused through the suprahepatic vena cava

with pre-warmed perfusion buffer (50 mM EDTA, 10 mMHEPES in 1X HBSS) followed by Liver Digest Medium (GIBCO). The isolated

livers were then subjected to subsequent serial digestionswith Accutase (EMDMillipore, Billerica,MA) and 0.25% trypsin (GIBCO) for

30 min at room temperature and 37�C, respectively. Cells were collected at each step and filtered through a 100 mm cell strainer,

washed and re-suspended in resuspension buffer (1.25 mM CaCl2, 4 mM MgCl2, 10mM HEPES and 5 mM Glucose in 1X HBSS).

Staining was performed in 10% FBS/resuspension buffer with conjugated Pdgfra, CD45, Ter119, Mac1, and Ly6G antibodies.

To sort blood cells from bone marrow, bones were immediately dissected from euthanized mice and crushed in 2% fetal bovine

serum in PBS. Erythrocytes were removed by osmotic lysis before antibody staining and fluorescence-activated cell sorting. Unless

noted, lineage depletion was performed in the whole bone marrow samples using magnetic-assisted cell sorting (Miltenyi Biotec)

using the biotin-conjugated lineage markers CD3e, CD19, Gr1, Mac1, and Ter119. To sort mesenchymal cells from bone marrow,

bones were prepared as previously described (Houlihan et al., 2012). In short, bones were dissected, cleaned of muscle, lightly
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crushed and choppedwith scissors. The bone fragments were then washed and incubated in 0.25% collagenase for 1h at 37�Cwhile

shaking. The bones were further lightly crushed and the supernatant passed through a 70 mmstrainer. Erythrocytes were removed by

osmotic lysis and staining was performed in 2% FBS/PBS using conjugated Pdgfra, CD45, Ter119, Mac1, and Ly6G antibodies.

Fluorescence-Activated Cell Sorting
Cell populations were sorted using FACSAria (Becton Dickinson) and the flow cytometry data was analyzed using FlowJo (Tree Star).

The following combinations of cell surface markers were used to define the analyzed populations: LT-HSC: Lin-Kit+Sca1+

CD150-CD48-; MPP3/4: Lin-Kit+Sca1+CD150-CD48+; ST-HSC: Lin-Kit+Sca1+CD150-CD48-; MPP2: Lin-Kit+Sca1+CD150+CD48+;

MyP: Lin-Kit+Sca1-CD150-CD41-; MkP: Lin-Kit+Sca1-CD150+CD41+; granulocytes: Ly6G+Mac1+B220-Ter119-; monocytes: Ly6G-

Mac1+B220-Ter119-; pro-pre-B cells: Ly6G-Mac1-B220+Ter119-; erythroblasts: Ly6G+Mac1+B220-Ter119+CD71+. Sorting of

epithelial and mesenchymal cells from lung, liver, bone marrow was performed using the following cell surface markers: lung epithe-

lial, CD45-Pdgfra-EPCAM+; skin epithelial, CD45-integrin-a6+; lung/BM mesenchymal, CD45-EPCAM-Pdgfra+; liver mesenchymal,

CD45-EPCAM-Pdgfra+Gr1-; all tissue monocytes, CD45+Ter119-Mac1+Ly6G-. For all sorts, 4’,6-diamidino-2-phenylindole (DAPI)

was used to eliminate dead cells. Representative examples of sorted populations can be found in Figures S5A and S5B. The anti-

bodies were used at a 1:100 dilution.

CARLIN Amplification and Bulk Sequencing Protocols
The sequences of all primers listed here are shown in Table S1. For all applications, the PCR amplification of the CARLIN array was

performed using primers flanking the 50 and 30 external regions of the array (primers CARLIN_fwd1, CARLIN_fwd2 and CARLIN_rev).

Illumina adaptor regions, unique motif identifiers (UMI), biotin and fluorescent tags are added to these primers according to the

experiment needs. For fragment analysis, the CARLIN_fwd2 was conjugated with 6-carboxyfluorescein (6-FAM) in the 50 position
(FAM_CARLIN_fwd), and PCR products were separated by capillary electrophoresis.

For sequencing the CARLIN array from the genomic DNA (gDNA) of pooled cellular populations, up to 250 ng of input gDNA

were used per library. We first performed a UMI-tagging reaction using the CARLIN_fwd2 primer attached to the Illumina

sequencing adaptor and a 10 bp region of fully degenerate DNA sequence (primer NGS_UIM_D_F). This reaction was performed

as a single extension step, in which temperature ramped between annealing and extension for five cycles without a denaturaliza-

tion step to prevent re-sampling of gDNA CARLIN sequences (McKenna et al., 2016). The DNA product was then purified using

AMPure XP beads (Beckman Coulter) and the whole volume was loaded into a PCR reaction to amplify UMI-tagged CARLIN se-

quences (primers NGS2_F, NGS1_R; 35 cycles). Finally, an indexing PCR was performed (primers P5, NGS2R_I#; 10 cycles)

before sequencing.

For preparing libraries from RNA of pooled cellular populations, up to 1 mg of total RNA was retro-transcribed using a gene spe-

cific primer that contains a 10 bp region of fully degenerated sequence (RT_Bulk_CARLIN) and SuperScript III (Invitrogen). For all

in vitro applications, this cDNA product was then purified using AMPure XP beads (1X; Beckman Coulter) and loaded into a PCR

reaction for CARLIN amplification (primers NGS2_F, NGS1_Bulk_R; 35 cycles; Platinum Taq enzyme (Invitrogen)). Following AM-

Pure XP bead purification (0.8X), the indexing PCR was performed (primers P5, NGS2R_I#; 10 cycles). For all in vivo applications,

the protocol was optimized for a nested PCR approach. The purified cDNA product was loaded into a first PCR reaction (primer

NGS1_F, NGS1_Bulk_R; 15 cycles; Q5 High Fidelity Polymerase (M0491, New England Biosciences)). Following AMPure XP beads

purification (0.8X), half the product was loaded into a second PCR reaction (primer NGS2_F, NGS1_Bulk_R; 15 cycles; Q5 High

Fidelity Polymerase). Finally, after AMPure XP bead purification (0.8X) the indexing PCR was performed (primers P5, NGS2R_I#; 9

cycles). The final indexed libraries were purified with AMPure XP bead purification (0.8X). Libraries were sequenced on Illumina

MiSeq using paired-end 500 cycles v2 kits (Read 1: 250 cycles; Index Read: 6 cycles; Read 2: 250 cycles) with 10% PhiX

sequencing control v3 (Illumina).

Single-Cell RNA Sequencing Protocols
10X Chromium single cell 30 (10X) protocols were performed following the manufacturer’s instructions and step-by-step protocols

can be found at the companies’ websites. For the 10X Chromium Single Cell 30 libraries, whole-transcriptome libraries were prepared

following the 10X v2 (Figure 5; https://bit.ly/2OUeaUj) and v3 protocol (Figure 6; https://bit.ly/2YP9Lol). Whole-transcriptome libraries

were sequenced on Illumina NextSeq500 using paired-end 150 cycles v3 kits (Read 1: 28 cycles; Index Read 1 (i7): 8 cycles; Read 2:

91 cycles).

For targeted CARLIN amplification, 3-5 ng of the amplified cDNA (Step 2.3) was loaded into an initial PCR reaction (10X-CARLIN_1-

bio, P5-PR1; 15 cycles). Following cleanup with 0.8X SPRIselect (Beckman Coulter), biotin-tagged products were purified using Dy-

nabeads kilobaseBINDER Kit (Invitrogen) following the manufacturer’s instructions. In short, Dynabeads were incubated with the

PCR product on a roller for 3h at room temperature before supernatant removal using magnet separation and washing. Half of

the CARLIN-tagged Dynabeads were then loaded into a second PCR reaction (10X-CARLIN_2, P5-PR1; 15 cycles). Following Dy-

nabead removal by magnet, libraries were purified with 0.8X SPRIselect and the indexing step was performed using one tenth of

the PCR product (SI primer, Chromium i7 sample primer; 8 cycles). For all 10X PCR reactions, the polymerase supplied with the

10X v3 kit was used. 10X CARLIN single-cell libraries were sequenced on Illumina MiSeq using paired-end 500 cycles v2 kits

(Read 1: 28 cycles; Index Read (i7): 8 cycles; Read 2: 350 cycles) with 10% PhiX sequencing control v3 (Illumina).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing
For bulk experiments, raw Illumina paired-end reads of the CARLIN amplicon were merged using PEAR v0.9.11 (Zhang et al., 2014)

with parameters–min-overlap = 1,–min-assembly-length = 1,–min-trim-length = 1, and–quality-threshold = 30. Amplicon and tran-

scriptome libraries prepared with 10X were preprocessed using CellRanger v2.2.0 (for 10X V2 libraries) and v3.0.2 (for 10X V3 li-

braries) according to the standardized workflow with default parameters. Transcriptome libraries were aligned against the mm10

reference genome provided by CellRanger.

Although no data presented in the paper was generated with InDrops (Zilionis et al., 2017), it is a supported platform, though a

modified version of the InDrops pipeline should be used (available at https://gitlab.com/hormozlab/indrops). The InDrops pipeline

should be run with the parameters (LEADING = 10, SLIDINGWINDOW = 4:5, MINLEN = 16) for Trimmomatic and (m = 200, n = 1,

l = 15, e = 500) for Bowtie. Additionally, amplicon libraries prepared with InDrops should be processedwith the ‘–no_clean_barcodes’

flag, which preserves the uncleaned version of the Cell Barcode (CB) and logs QC information for the CB and UMI in the header (see

Filtering Reads and CB and UMI Error Correction below).

Cells were additionally filtered by removing CBs in which the number of detected UMIs was below a threshold that was determined

programmatically usingMATLAB’s findpeaks function based on the distribution of UMI counts (thresholds are listed in Table S4). CBs

where the percentage of UMIs corresponding to mitochondrial genes exceeded 15% were also discarded. The remaining CBs

constitute a reference list against which CBs found in CARLIN amplicon sequencing can be collapsed (see CB and UMI Error

Correction).

CARLIN Pipeline
Custom software was developed in MATLAB to perform alignment and allele calling, which can handle both bulk and single-cell am-

plicon sequencing of the CARLIN array. The software is trivial to install, simple to run, and produces data diagnostics useful for an

experimentalist. The CARLIN software package is available at https://gitlab.com/hormozlab/carlin. Table S3 presents the number of

reads retained at each step of the CARLIN pipeline described below, for the 3 mice used in the allele bank.

Filtering Reads

For bulk sequencing runs of genomic DNA, readswere filtered on possessing an exactmatch to the 20 bpCARLIN_fwd2 primer start-

ing at the 11th bp of the read, since the UMI-tagging reaction adds a 10 bp randomer upstream of the CARLIN_fwd2 primer (Table S1;

STAR Methods). To ensure that the entire CARLIN sequence was read, we retained reads that had good alignment to the 31 bp pre-

polyA UTR sequence (hereafter referred to as the secondary sequence; Table S1) located downstream of the 10th CARLIN target site

– specifically, we require MATLAB’s nwalign function with glocal = true (hereafter referred to as just nwalign) to return a score R30.

For bulk sequencing runs of RNA, reads were reverse-complemented as the read is anti-sense. Because the UMI tagging protocol

results in a 10 bp randomer being appended to the 20 bp CARLIN_rev primer (Table S1; STARMethods), we retained reads that had

an exact match to the primer, starting at 30 bp upstream of the end of the read. Additionally, to ensure that the whole CARLIN

sequence was read and to simplify subsequent alignment, we only retained reads that had good alignment to the CARLIN_fwd2

primer and secondary sequence (nwalign scores R15 and 30 respectively).

For all bulk reads, there is additional filtering to only retain reads with UMIs that have a QC of at least 30 at all 10 bps.

For sequencing runs of 10X CARLIN amplicon libraries, to ensure the whole CARLIN construct is sequenced, reads were filtered on

possessing an exact match to the CARLIN_fwd2 primer starting at the 1st base pair, and a good alignment (nwalign scoresR 30) to

the secondary sequence. Additionally, reads in which the CB or UMI are of the incorrect length, have uncalled base pairs, or in which

the QC of any base pair is < 20, were discarded.

For all reads which pass the above filters, the CARLIN sequence was extracted by trimming the flanking primers and secondary

sequence. If the resulting sequence has any uncalled base pair or was shorter than 26 bps (the combined length of the prefix, first

conserved site and postfix – see Figure 1B), it was discarded.

Alignment

Here, we will describe the procedure used to determine how a CARLIN read has been altered with respect to the unmodified

CARLIN sequence (referred to hereafter as the reference; see CARLIN reference sequence in Table S1). As Cas9 modifications

are expected to predominantly be indels, to identify alterations, we first aligned the CARLIN sequences against the reference.

We found that existing alignment algorithms do not account for where Cas9 alterations are expected to appear along the reference

(3 bp upstream of the PAM sequence, in a region referred to here as the cutsite). For example, NeedleAll (Rice et al., 2000), a

software package that implements the standard Needleman-Wunsch (NW) algorithm, was used in GESTALT (McKenna et al.,

2016), but yielded mixed results when aligning 75 modified CARLIN sequences read out using bulk Sanger sequencing. First,

the NW algorithm did not preferentially select indel locations to coincide with the expected activity of Cas9 when multiple indel

locations were equally plausible. Second, the default parameters used in the NW algorithm (NUC44 scoring matrix, gap opening

penalty of 10, gap extension penalty of 0.5), precludes insertions and deletions from occurring consecutively, which is unrealistic

given that the activity of Cas9 can result in such alterations. Third, the default value of the gap extension penalty parameter
e6 Cell 181, 1410–1422.e1–e18, June 11, 2020

https://gitlab.com/hormozlab/indrops
https://gitlab.com/hormozlab/carlin


ll
Resource
penalizes insertions and deletions according to length. Finally, customizing these parameters cannot cluster the alterations into

expected regions of Cas9 activity.

To overcome these limitations, we developed our own alignment algorithm. Our algorithm is amodified version of the NWalgorithm

that performs alignment while accounting for where along the sequence alterations are expected with respect to the reference. We

introduced a site-dependent cost function that penalizes alterations outside the expected regions of Cas9 activity. The cost function

wasminimized using a dynamic programming approach. Although the parameters used are specific to CARLIN, they can bemodified

to accommodate other systems that rely on Cas9 editing. Next, we describe our algorithm in full detail.

LetN = fA;C;G; Tg be the set of nucleotides, B denote a gap, andN + =NWB. Let s
.
= ½s1.sj.sJ�˛N 13J

, JR1, be the nucleotide

string of length J to align and denote the reference of length K by r
.
= ½r1.rk.rK �˛N 13K , KR1. Let s

.
j˛N 13j, 0%j%J, and r

.
k˛N 13k ,

0%k%K, be prefix strings of s
.
and r

.
endingwith sj and rk respectively (or empty strings if j = 0 or k = 0). Denote byQ : N 13L

+ / N 13L
0
;

LRL0, the operator which removes gaps from the input string.

Define a
.

j;k =

"
a
.

1

a
.

2

#
˛N +

23L
, with maxðj; kÞ% L%j + k, as an alignment of s

.
j against r

.
k with s

.
j =Qð a.1Þ and r

.
k =Qð a.2Þ, and let

V : N +
23L/ R be a scoring function, that yields higher values for better alignments. We do not enumerate all alignments and

rank them according to any explicit evaluation of this scoring function. Instead, we use a recursive formulation where we

determine the maximum possible score for a
.

j;k . This requires us to distinguish between three kinds of alignment: neither of the

terminal characters are gaps, or the two cases where one terminal character is a gap but not the other. Using our notation, the

three cases are (i) m
.

j;k =

"
m
.

1

m
.

2

#
˛N +

23L
in which m1;L˛N and m2;L˛N , (ii) d

.

j;k =

"
d
.

1

d
.

2

#
˛N +

23L
in which d1;L =B and d2;L˛ N , and

(iii) i
.

j;k =

"
i
.

1

i
.

2

#
˛N +

23L in which i1;L˛N and i2;L =B. Denote by Mj;k = fm.j;kg, Dj;k = fd.j;kg; I j;k = f i
.

j;kg the set of all such alignments.

We can then note the following recursive relationships, which simply state that an alignment of two strings can be decomposed into

an alignment of two substrings, comprised of the first characters through to the penultimate characters, and an alignment of the ter-

minal characters. We write down this recursive relationship for the three kinds of alignments defined above, usingm to denote string

concatenation.

Mj;k =

�
m
.

j�1;k�1m

�
sj
rk

�
;m
.

j�1;k�1˛Mj�1;k�1

�
W
�
d
.

j�1;k�1m

�
sj
rk

�
; d
.

j�1;k�1˛Dj�1;k�1

�
W
�

i
.

j�1;k�1m

�
sj
rk

�
; i
.

j�1;k�1˛I j�1;k�1

�
Dj;k =

�
m
.

j;k�1m

�
B
rk

�
;m
.

j;k�1˛Mj;k�1

�
W
�
d
.

j;k�1m

�
B
rk

�
; d
.

j;k�1˛Dj;k�1

�
W
�

i
.

j;k�1m

�
B
rk

�
; i
.

j;k�1˛I j;k�1

�
I j;k =

�
m
.

j�1;km

�
sj
B

�
;mj�1;k˛Mj�1;k

�
W
�
d
.

j�1;km

�
sj
B

�
; d
.

j�1;k˛Dj�1;k

�
W
�

i
.

j�1;km

�
sj
B

�
; i
.

j�1;k˛I j�1;k

�

The base cases are the empty setsMjR0;0 =M0;kR0 =DjR0;0 = I0;k
R0 =B, and the singleton setsD0;k = d

.

0;k for 1%k%K and I j;0 = i
.

j;0

for 1%j%J.

We now elucidate the score to rank the alignments in these sets. Briefly, we penalize deletions that do not begin and finish near the

expected cutsites, and insertions that do not occur near the expected cutsites.We do not favor insertions over deletions, discriminate

based on the length of the alteration, or penalize consecutive deletions or insertions.

Let CM : N3N/R, be a scoring function for aligning different nucleotides (we use the same NUC44 scoring matrix used in the

default NWalgorithm). DefinePD;BðkÞR0 andPD;EðkÞR0, 1%k%K to be site-dependent penalties for beginning and ending a deletion

at rk from alignments which end or begin in paired nucleotides respectively. Similarly, definePI;BðkÞR0, andPI;EðkÞR0 for 1% k%K to

be the site-dependent penalty for beginning an insertion after rk and ending an insertion before rk respectively. LetMj;k ,Dj;k , Ij;k be the

highest scores of the alignments in Mj;k , Dj;k and I j;k respectively.
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Mj;k = max
m
.

j;k˛Mj;k

V
�
m
.

j;k

�
Dj;k = max

d
.

j;k˛Dj;k

V

�
d
.

j;k

	
Ij;k = max

i
.

j;k˛I j;k

V

�
i
.

j;k

	

Using the set recurrences above and the introduced scoring sch
eme, we arrive at a new set of scalar recurrences for the highest

scores, so that we don’t have to compute these quantities explicitly by exhaustively searching over a full enumeration of

alignments.

Mj;k = max


Mj�1; k�1; Dj�1;k�1 �PD;Eðk� 1Þ; Ij�1;k�1 �PI;EðkÞ

�
+CMðsj; rkÞ

Dj;k =max


Mj; k�1 �PD;BðkÞ; Dj;k�1; Ij;k�1

�
Ij;k =max



Mj�1; k �PI;BðkÞ; Dj�1;k ; Ij�1;k

�

As evident in the last two equations, there is no incremental cos
t in extending an insertion or deletion along either one of the two

strings. Since insertions and deletions are penalized equally, we make the following simplifying assumption, which in turn also re-

duces the number of parameters: PD;BðkÞ=PI;BðkÞhPBðkÞ and PD;EðkÞ=PI;EðkÞhPEðkÞ. We abuse notation to let PBð0Þ be the penalty
for starting insertions prior to the first character of the reference. Consistent with the previously defined base cases, the initialization is

Mj>0;0 =M0;k > 0 =DjR0;0 = I0;kR0 = � N, D0;k > 0 =PBð1Þ, Ij > 0;0 =PBð0Þ, M0;0 = 0.

There is no guarantee that a single alignment a
.

j;k achieves the highest score (maxfMj;k ; Dj;k ; Ij;kg). Multiple alignments can achieve

themaximumscorewithin each ofMj;k ,Dj;k and I j;k , and also across the three. To select the optimal alignment among the alignments

that share the maximum score, we need to retain which argument in the recurrence relationships for Mj;k , Dj;k and I j;k (see above)

realize the maximum score. Let E : N 23L
+ /N 23ðL�1Þ

+ , L> 0, be the operator which strips the terminal character from the aligned

sequence and reference. Given S;S˛fM; D;Ig, let RðS;SÞ
j;k , 0%j%J, 0%k%K, be an indicator function such that

R
ðS;SÞ
j;k =

8><>: 1; if d a
.

j;k˛argmax
b
.

j;k˛Sj;k

V

�
b
.

j;k

	
such that E

�
a
.

j;k

�
˛S

0; otherwise
For example, if both the first and third terms realize the maximum in the recurrence for Dj;k , then we set R
ðM;DÞ
j;k =R

ðI ;DÞ
j;k = 1 and

R
ðD;DÞ
j;k = 0. We will use this indicator function to select the optimal alignment as described below. In accordance with the previous

base cases, the initialization is R
ð$;MÞ
jR0;0 =R

ð$;MÞ
0;kR0 =R

ð$;DÞ
jR0;0 =R

ð$;IÞ
0;kR0 = 0, R

ðD;DÞ
0;k > 0 =R

ðI ;IÞ
j >0;0 = 1.

The alignment algorithm is implemented in two stages, a forward stage inwhich we tabulate themaximum score, and a reverse stage

in which we construct the optimal alignment. In the forward stage, the maximum scores are first initialized as outlined above. Next, we

solve the recurrences using a dynamic programming approach inOðJKÞ time by sweeping across all nucleotides in the sequence from

j = 1 to J, and for each value of j, iterating over all the nucleotides in the reference, k = 1 toK. At each ðj; kÞ ordered pair, we compute and

store Mj;k , Dj;k and Ij;k in three two-dimensional arrays of size ðJ + 1Þ3ðK + 1Þ, and update a 3333ðJ + 1Þ3ðK + 1Þ Boolean array for

R
ðS;SÞ
j;k , which retains the alignment type (gap in the reference, gap in the sequence, or no gap) that achieves the maximum scores.

In the reverse stage, we incrementally build the optimal alignment a
.
by backtracking from the last aligned pair of nucleotides ðJ;KÞ

using the following rules, picking the first lettered rule that applies within each numbered rule. These rules were formulated to ensure

continuity amongmutation types, which allows us to group distinct mutationsmore easily (seeMutation Calling) and attribute them to

a single Cas9 cutting event.

1. Let j = J; k =K; a
.˛N +

230
:
 �
e8
a. If MJ;KRmax DJ;K ; IJ;K ; let S =M:

b. If DJ;KRmax MJ;K ; IJ;K

 �

; let S =D:

c. If IJ;KRmax MJ;K ; DJ;K


 �
; let S = I :

2. Repeat rules 3-5 until j = 0 and k = 0.

3. If S =M:

a. If R
ðM;MÞ
j;k = 1, let S =M.

b. If R
ðD;MÞ
j;k = 1, let S =D.

c. If R
ðI ;MÞ
j;k = 1, let S = I .

Let a
.
)

�
sj
rk

�
m a

.
, j)j� 1, k)k� 1.
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4. If S = D:

a. If R
ðD;DÞ
j;k = 1, let S =D

b. If R
ðM;DÞ
j;k = 1, let S =M.

c. If R
ðI ;DÞ
j;k = 1, let S = I .

Let a
.
)

�
B
rk

�
m a

.
, k)k� 1.

5. If S = I :
a. If R

ðI ;IÞ
j;k = 1, let S = I .

b. If R
ðM;IÞ
j;k = 1, let S =M.

c. If R
ðD;IÞ
j;k = 1, let S = D.

Let a
.
)

�
sj
B

�
m a

.
, j)j� 1.

The result is a unique alignment a
.

such that Vð a.Þ=maxfMJ;K ; DJ;K ; IJ;Kg.The algorithm above can be used to generate improved

alignments for any CRISPR-Cas9 system for suitably chosen penalties PBðkÞ and PEðkÞ. We provide a standalone C++ implementa-

tion of the described algorithm for groups interested in performing alignment on custom CRISPR-Cas9 templates, outside the

context of CARLIN.

Lastly, we turn our attention to the values chosen for the penalty functions, for CARLIN specifically. Because we expect the alter-

ations to be localized to the cutsites, the minimum value of the penalty was set to occur within 3 bp upstream of the PAM sequences

with the penalty increasing linearly moving away from this location. We used the same penalty function for all the target sites. We

manually selected the parameters of the penalty function, i.e., the minimum value and the slopes, to promote alignments comprised

of insertions and deletions in the cutsites for the 75 CARLIN sequences characterized using bulk Sanger sequencing. The same pa-

rameters also resulted in desired alignment properties when applied to the bulk RNA sequencing data used to make the allele bank

(Figures S2A–S2C). For the numerical values of the penalty functions, refer to Table S2.

Motif Classification

We partitioned the reference into 31 consecutive regions (called motifs), according to the locations of the reference prefix sequence,

conserved sites, cutsites, PAM+linkers, and postfix sequence (Figure 1B). After aligning a sequence to the reference, we identified

the samemotifs in the aligned sequence according to the nucleotide boundaries of the motif in the reference. Each aligned motif was

then assigned a classification: (1) ‘N’: all the nucleotides of the sequence match that of the reference exactly and there are no gaps in

the sequence or reference. (2) ‘E’: motif is completely absent in the aligned sequence. (3) ‘D’: any (but not all) bps of the motif are

deleted in the sequence, and there are no gaps in the reference. (4) ‘M’: there are no insertions or deletions relative to the reference,

only substitutions. (5) ‘I’ otherwise. These motifs were used to correct potential sequencing errors and establish a consensus

sequence across multiple reads (as described below).

Sequence Error Correction

Sequencing and amplification (technical) errors can, in addition to Cas9 activity, also introduce alterations in the CARLIN sequence.

We assumed that any individual SNP that occurs outside of a 3 bp window around the cutsite is a technical error. To remove these

technical errors, we took the aligned CARLIN sequences and reverted the SNPs in these regions (classified as ‘M’ in non-cutsite mo-

tifs) to the corresponding base pair in the reference. We also trimmed nucleotides in the aligned sequence that extended beyond the

reference in either direction.

CB and UMI Error Correction

CBs and UMIs are also subject to the same technical errors as the CARLIN sequence. Denoising of CBs and UMIs is performed ac-

cording to the directional adjacencymethod developed in UMI-tools (Smith et al., 2017). In short, themethod starts bymaking a list of

tags (either CBs or UMIs) sorted in descending order by the number of reads corresponding to each tag. Next, a directed graph is

constructedwith nodes representing tags. The objective is to connect the nodeswhose tags are different only due to technical errors.

To do so, first, the top-ranked node is selected as the current node. An edge is drawn from the current node to all candidate nodes

that satisfy the following criteria: the candidate node does not already have an incident edge, the tag of the candidate node is different

by only one base pair from the tag of the current node, and the number of reads of the candidate node’s tag is less than half of the

current node’s tag. The current node is then updated to be the next most common node. The process is repeated until the entire

sorted list has been traversed, resulting in disjoint sets of connected nodes (connected components). In each connected component,

the reads of all the tags are merged under the tag of the top-ranked node in that connected component.

For bulk samples where no CB exists, we do not apply this algorithm directly to all of the detected UMIs. Instead, we first group the

UMIs by their consensus CARLIN sequence with no read threshold (see Consensus Calling and Read Thresholds for Denoised CBs

and UMIs below for definition of consensus sequence and use of read thresholds respectively). Next, the directional adjacency

method (describe in the previous paragraph) is applied across all UMIs with the same consensus sequence. This extra step prevents

accidental merging of UMIs that differ by only 1 bp when the number of detected UMIs is large with respect to the possible UMI

diversity.
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For single-cell data, directional adjacency denoising is also used but with CBs for tags. If there is a reference CB list (for e.g., ob-

tained after preprocessing of the transcriptome library, see Preprocessing), then we include two additional requirements: (i)

top-ranked nodes in each connected component need to belong to the reference CB list (or else the whole connected component

is discarded), and (ii) candidate nodes cannot belong to the referenceCB list. Next, for each denoisedCB (which is now guaranteed to

be in the reference list, if supplied), directional adjacency denoising is performed on its constituent UMIs. The result of this procedure

is a denoised list of CBs and/or UMIs.

Read Thresholds for Denoised CBs and UMIs

Since we do not necessarily have a ground truth list of tags which we expect to detect in the data, tags with few reads may be

spurious, even if they have been denoised. Additionally, to call a consensus sequence for each tag, we need to be able to find a com-

mon sequence among a sufficiently large number of reads; repeat occurrences of a CARLIN sequence over many reads gives us

confidence that the sequence is the correct one. Averaging over many reads also allows us a secondary mechanism of correcting

for technical errors (especially at cutsites, which we left untouched in the Sequence Error Correction section). Here we describe

how we determine a threshold on what is a sufficient number of reads.

Let Ri be a sorted list of the number of reads associated with each of N denoised tags (UMIs/CBs) with R1R .RRN. We only

attempt to call a consensus sequence for tag i if Ri meets a minimum threshold, T, for the number of reads, and discard tags which

fail to achieve this threshold.

T =max

�
R 0:01N½ �
10


;RNexpected

;

� P
iRi

Nexpected


;

�
R1p 1� pð ÞL�1


; 10

� �

Nexpected is the expected number of tags in the experiment (or N
 if unknown or Nexpected >N, so that RN = 0), p is the 95th percentile

value of the transformed QC scores (error probability) across all tag bps for all filtered reads, and L is the number of base pairs in

the tag.

Our threshold function is a heuristic and was empirically optimized by comparing the length distribution of the consensus align-

ments called from the consensus sequence (see Consensus Calling) to fragment length analysis of the same libraries (Figure S2D).

We observed that the log-log plot of the rank-ordered number of reads across the tags,Ri, exhibited a plateau (roughly constant num-

ber of reads) after the first percentile with a sharp fall off (a knee) when the number of reads decreased to one tenth of that of the

plateau. Similar empirical criteria are used to select single-cell barcodes by other single-cell analysis tools such as CellRanger.

The next two terms of the threshold function ensure that the number of tags does not exceed the expected number of molecules.

The fourth term sets a conservative estimate on the number of reads expected from a single sequencing error across a tag of length

L. Finally, we also required that any tag is observed in at least 10 reads. This last condition reflects theminimumnumber of sequences

we would like to have for consensus calling (see below). The choices for the threshold function weremade conservatively to minimize

false-positives.

For SC data for which a reference CB list is not available, first Ri is tabulated as the number of reads for a given CB. A CB read

threshold, TCB, is computed using Ri as described above. Next, the number of reads is also tabulated for each CB-UMI pair, to

compute TUMI. Only cell barcodes which have at least TCB reads, and within each CB, UMIs which have at least TUMI reads are

retained.

For SC data for which a reference CB list is available, only CBs found in the reference CB list survive the denoising procedure. Since

the reference CB list is separately subject to quality control in the software generating the list (for e.g., CellRanger), we trust all

denoised CBs, so that the threshold is only required to ensure there are sufficient reads for consensus calling. To that end, we

only use the last term in our heuristic function, effectively setting TCB =TUMI = 10. The mean number of reads, Ri, among CBs that

pass this threshold criterion is typically one or two orders of magnitude larger than T (see Table S4).

Consensus Calling

Next, we describe the procedure used to call the consensus sequence for tags that pass the threshold criterion. First, we selected the

tags for which greater than 50% of the reads are of the same length and possess the same 31-character motif classification string

(see Motif Classification above). Next, for the selected tags, we retained the reads that comprised this majority. The consensus

sequence was constructed bp-by-bp by selecting the most commonly occurring nucleotide across all the retained reads (i.e., taking

a per bp mode of the retained reads).

For single-cell data, this procedure is performed on each UMI of a CB separately. Next, we collected the consensus sequence

across different UMIs that passed the threshold and selection criteria. If more than 50% of the consensus sequences are of the

same length and possess the same 31-character motif classification string, we proceeded as follows. We retained the consensus

sequences that comprised this majority. The CB consensus sequence was constructed bp-by-bp, selecting the most commonly

occurring nucleotide across the retained UMI consensus sequences.

To construct the consensus alignment, we removed the gaps from the consensus sequence and realigned to the reference. To

define CARLIN alleles, we pooled all consensus alignments, and removed all repeated instances, so that each consensus alignment

is represented only once. We define an allele to be an element of the resulting set, so that alleles are unique by definition. An allele is
e10 Cell 181, 1410–1422.e1–e18, June 11, 2020
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defined to be edited if its consensus alignment does notmatch the reference exactly. In the text, edited transcript/cell refers to a UMI/

CB which has a corresponding CARLIN allele that is edited. The frequency of an allele in a sample is the number of tags whose

consensus alignment matches that allele.

Mutation Calling

To explicitly associate mutations with the alterations harbored by an allele, we first tabulated the starting and ending locations

of the deletions, insertions, and substitutions in the consensus alignment. Next, to account for a single Cas9 cutting event that

could result in multiple alterations, we combined two mutations if they were adjacent – the ending location of one mutation

was one bp upstream of the starting location of the other— or if the ending location of one was co-localized to the same cutsite

as the starting location of the other. We iterated the process of combining mutations until no further combinations were

possible. The combined mutations were always designated as indels. For example, a typical allele can harbor a single bp dele-

tion, and a 5 bp insertion at the cutsite of target site 3, two mutations which are merged into a single indel event using this

procedure.

For the purpose of preparing figures, we considered all substitutions as indels (1 bp deletion of the reference nucleotide, and 1 bp

insertion of themismatched sequence nucleotide). In figures where only insertions and deletions are shown (e.g., Figures 1C, 1D, and

1F), indels are represented twice, once as an insertion corresponding to the length of the new sequence, and once as a deletion for

the length of the deleted portion of the reference.

CARLIN Potential

To quantify the extent to which a CARLIN allele is altered with respect to the reference, we define the CARLIN potential of an allele as

the number of target sites whose sequence and the sequence of the adjacent PAM+linker domain exactly matches that of the refer-

ence. Alterations in the prefix and postfix are considered to be alterations of the first and last target site respectively. The CARLIN

potential is a whole number between 0 and 10.

Quantifying Diversity
Effective Alleles

Since independent Cas9 activity across different cells may lead to the same altered sequences, the number of alleles detected will

generally be less than the number of cells, even if all cells are edited. Furthermore, not all alleles are equally likely. Some occur more

frequently than others.

Ideally, we want detection of a particular allele to restrict the cell in which the allele is observed to the smallest possible subset of

the original population. For a given number of alleles, this occurs if all alleles are equally likely (i.e., the observation carries maximal

information in the language of information theory). For the case where the allele frequencies are not equal, the observation of a partic-

ular allele is, on average, not as informative for constraining the subpopulation of cells from which the allele came. Howmany equally

likely alleles are required to carry the same amount of information in this case?

To answer this question, we devised a metric, the effective number of alleles, calculated as 2H, where H is the Shannon entropy of

the normalized allele frequency distribution across the edited cells. In the limit that each edited allele appears in an equal number of

cells, the effective number of alleles is simply the number of edited alleles. Conversely, in the limit where a single allele appears in all

edited cells, the number of effective alleles is 1. The effective allele measure seeks to discount the effect of over-represented alleles,

which are less informative. The effective number of alleles in the bank of 44000 alleles is 14700.

Diversity Index

The diversity index is computed by dividing the effective number of alleles (see above) by the number of cells in the population.

(Alternatively, dividing by the number of edited cells can be used to compute diversity index across only the edited cells, independent

of the fractionof cells edited). The diversity index is 0whenonly the reference is present in the sample, and 1when the reference is entirely

absentandeachcell has its ownallele. Thediversity index isawhenthecuttingefficiency isa, andeacheditedcell hasadistinctallele, and

is less thana if somecells share the same allele. The reciprocal of the diversity index is the average number of cells labeledby each effec-

tive allele.

Allele Bank

To estimate the total number of alleles which can be generated by the CARLIN system, we pooled the edited transcripts collected

from granulocytes harvested from 3 mice, to create a bank of �233K transcripts resulting in �32K alleles. As granulocytes are not

expected to proliferate appreciably in the 3 days between induction and collection, shared alleles across multiple cells are coinci-

dental and not due to shared ancestry of the cells.

Estimating Number of Unseen Alleles

The total number of alleles that CARLIN can generate is the sum of the number of alleles observed in the bank and the number of

alleles that have gone undetected because only a finite number of cells were measured. To extrapolate the total number of alleles,

we need to estimate the number of unobserved alleles. To intuitively understand the extrapolation, we consider two extreme cases. If

most alleles are only observed once, then we expect many new alleles would turn up under more exhaustive sampling. (In the limit

that all alleles are observed only once, the total number of alleles is indeterminate). Conversely, if most alleles are observed many
Cell 181, 1410–1422.e1–e18, June 11, 2020 e11
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times, the system has been sufficiently sampled and few unobserved alleles are expected. To estimate the number of unobserved

alleles, we use tools developed in the field of ecology, where the problem is referred to as the unseen species problem. See Bunge

et al. (2014) for example, for a review of techniques in the field.

Non-Parametric Diversity Estimation

We use the Smoothed Goodman-Toulmin estimator (SGT) proposed by (Orlitsky et al., 2016) to estimate the expected number of

alleles, N, inM observations given that n alleles were detected inm observations ðm <MÞ. This estimator is near-optimal in the sense

of mean-squared error and works for M of the order of OðmlogmÞ, the theoretical extrapolation limit (Orlitsky et al., 2016). To check

the consistency of the estimator, we subsample the data to have ~m%m observations (colored dots in Figure 3G), and compute the

expected number of alleles for an extrapolated number of observations in the interval ~m% ~M% ~mlog ~m (dotted lines in Figure 3G

colored to correspond to the subsample size).

Parametric Diversity Estimation

To validate the non-parametric method, and obtain an analytic expression for occurrence frequency of the alleles for subsequent

calculations, we tabulate the frequency of allele i as Xi and generate a histogram of frequency counts, hðZÞ=PidZ;Xi
, representing

the number of alleles that are detected Z times. Note that
P

ZhðZÞ= n, the number of edited alleles observed, andP
ZZhðZÞ=

P
iXi =m, the number of observations of edited alleles.

Conceptually, sampling of an allele can be approximated as a Poisson process. The number of observations of a particular

allele; Xi; given a total number of observations,M, is drawn from a Poisson distribution with a rate parameter, li, that is proportional

to the prevalence of that allele in the bank. The Poisson approximation allows for an elegant analytical solution for estimating the

occurrence frequency of an allele:

PðXi = k; li;MÞ = ðliMÞk
k!

e�liM
Tomodel the variability in the prevalence of different alleles, we ne
ed to associate a Poisson rate parameter with each allele. Although

in general, each allele can have a unique Poisson rate parameter, for simplicity, we assume that the rate parameters are drawn from a

distribution that can be succinctly described using a few parameters.

We use CatchAll (v4.0), a software package described in Bunge et al. (2012), to fit a distribution of intensive Poisson rate param-

eters for alleles, fqðlÞ, to our observed data. If all alleles are equally prevalent with l= bl, fqðlÞ= dðl � blÞ, and hðZÞ, when normalized,

would converge to a Poisson distribution. CatchAll determined that for our data, hðZÞmostly closely resembles a mixture geometric

distribution so that fqðlÞ is a 4-component exponential mixture model.

The probability that an allele remains unobserved after m observations is then given by

P0 = PðX = 0;mÞ=
Z

PðX = 0jl;mÞPðlÞdl=
Z

e�lmfqðlÞdl
The number of unseen alleles is therefore nP0=ð1�P0Þ and the to
tal number of alleles is given by N= n=ð1 � P0Þ. For our bank, mz
233000, nz32000 and P0z0:28 so that the number of unseen alleles is estimated to be z12000 and consequently, the total num-

ber of alleles is estimated to be Nz44000: The curves in Figure 3H are obtained by using this estimate for N, and the endpoints of

the 95% CI of N, in the estimators for interpolation and extrapolation provided in Equations 6 and 12 respectively of (Colwell

et al., 2012).

Prevalence of Unseen Alleles

Given our analytical model, we can now determine the distribution of the Poisson rate parameters for the unobserved alleles. It is a

conditional distribution given by Bayes’ rule:

PðljX = 0;mÞ = PðX = 0jl;mÞPðlÞ
PðX = 0;mÞ
For simplicity, we assign all alleles unobserved in the bank the m
ean Poisson rate under this conditional distribution.

l0 = EPðljX = 0;mÞ½l�
Usage of Allele Rates

For subsequent experiments, we query the alleles observed in the experiment against the alleles in the bank. If an observed allele

matches an allele in the bank, that allele is assigned the rate parameter li =
Xi

m
based on its empirical prevalence in the bank, where Xi

is the frequency of the allele in the bank and m is the total number of observations constituting the bank. Otherwise, we assign it the

rate l0.
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Statistical Analysis
Limitations of a Finite Number of Alleles for Uniquely Marking Clones

Here, we consider the implications of having a finite set of alleles with which we can mark a (possibly infinite) number of cells. How

useful are the alleles in uniquely marking clones if multiple cells can be marked with the same allele? To answer this question, the

following factors need to be considered: the frequency of the allele in the bank, the number of cells marked initially, potential prolif-

eration of the cells after they are marked, and the number of cells sampled at the final time point.

Suppose that at induction,CR1 cells are randomly assigned one ofN alleles, according to a distribution r of allele probabilities. Let

Lj˛f1.:Ng be the allele label of the jth induced cell and let Ci =
PC

j =1dLj ;i be the number of cells marked with allele i. Then

PðCi = c;CÞ=
�
C
c

	
rci ð1� riÞC�c and the conditional probability given that allele i is present in at least one cell is

PðCi = cjCi > 0;CÞ = PðCi = c;CÞ
1� PðCi = 0;CÞ
We define the singleton probability and duplication probabilities
 as

psingletonði;CÞ = P
�
Ci = 1jCi > 0;CÞ

pduplicateði;CÞ = PðCi > 1jCi > 0;C
�
= 1� psingletonði;CÞ
See Figure S4B for an illustration of how p , the probability t
singleton hat an allele uniquely marks a cell, depends on C and N in the case

that r is uniform.

In practice, we do not know how the cells are labeled initially but instead observe alleles from an unbiased sampling of MR 1

cells at some later time. Subsequent to induction, assume that cell j expands such that at the sampling time, the probability that

cell j is a progenitor of a sampled cell is given by pprogenitorðj;bÞ, where b is a parameter, which will be defined later.

Our goal is to label each progenitor uniquely but it could be that some progenitors were coincidentally marked with the same allele.

At the time of sampling, if we observe the same allele acrossmultiple cells, wewould like to know the probability that all the cells came

from a single progenitor.

If we assume that the proliferation rates are not dependent on the allele label, we will be able to develop a useful bound on the

above probability. Let Xi be the number of cells in the observed sample marked with allele i. If progenitor proliferation rates are un-

correlated with progenitor allele labels, it follows that the distribution of allele frequencies in the sample is equal to that of the

induced pool

PðXi = x;MÞ =
�
M
x

	 XC
j = 1

pprogenitorðj;bÞri
!x 

1�
XC
j =1

pprogenitorðj;bÞri
!M�x

=

�
M
x

	
rxi ð1� riÞM�x =PðCi = x;MÞ
Let Yi be the number of progenitors of the sampled cells marked
 with allele i (note the distinction from Ci, the number of progenitors

marked with allele i). We know that generally PðYi =m;MÞ depends on the induction itself (since PðYi >Ci;MÞ= 0, for example, when

the realization of Ci corresponds to the same experiment as Yi). But what can we say about PðYi =m;MÞ when we don’t know Ci for

the same experiment, only PðCi = c;CÞ?
First note that the conditional probability of the number of progenitors Yi given that allele i is observed at least once is

PðYi = mjXi > 0;MÞ = PðYi =m;MÞ
1� PðXi = 0;MÞ

=

PM
k = 0PðYi =mjXi = kÞPðXi = k;MÞ

1� PðXi = 0;MÞ

=

PM
k =mPðYi =mjXi = kÞPðXi = k;MÞ

1� PðXi = 0;MÞ
The specific form of PðYi =mjXi = kÞ depends on the proliferation m
odel. For an observed allele i, let us consider the ratio of the prob-

ability that more than one progenitor gave rise to the cells labeled with allele i at the sampling time point, to the probability that more

than one cell was labeled with allele i at the initial time point:

g

�
f =

M

C

	
=
PðYi > 1jXi > 0;MÞ
PðCi > 1jCi > 0;CÞ
We note that we calculate these probabilities independently bec
ause in general we might not know the number of cells that were

initially labeled with allele i. We show that gð1Þ%1, so that the probability of more than one progenitor giving rise to cells labeled

with allele i is smaller than the probability of labeling more than one cell with allele i at the initial time point, given that the number

of cells sampled is less than or equal to the initial number of cells:
Cell 181, 1410–1422.e1–e18, June 11, 2020 e13



ll
Resource
gð1Þ = PðYi > 1jXi > 0;MÞ
PðCi > 1jCi > 0;CÞ =

PðCi > 0;MÞ
PðXi > 0;MÞ

PðYi > 1; Xi > 0;MÞ
PðCi > 1; Ci > 0;MÞ =

PðYi > 1;MÞ
PðCi > 1;MÞ

=

PM
m

0
= 2PðYi =m0;MÞPM

m
0 = 2PðCi =m0;MÞ =

PM
m

0
= 2

PM
k =m0PðYi =m0jXi = kÞPðXi = k;MÞPM

m
0 = 2PðCi =m0;MÞ

=

PM
k = 2PðXi = k;MÞPk

m
0
= 2PðYi =m0jXi = kÞPM

m
0 = 2PðCi =m0;MÞ

=

PM
k = 2PðXi = k;MÞ½1� PðYi = 1jXi = kÞ�PM

m
0
= 2PðCi =m0 ;MÞ

%

PM
k = 2PðXi = k;MÞPM

m
0 = 2PðCi =m0 ;MÞ = 1
This result can be generalized to bound any number of progenito
r cells:

PðYi >mjXi > 0;MÞ
PðCi >mjCi > 0;CÞ% 1; M%C
How close is gð1Þ to 1 for a given choice of parameters? Intuitively
, the more heterogeneous the proliferation rates, the less likely we

are to observe cells that share the same allele but not the same progenitor, since the clone that proliferates faster will tend to domi-

nate the sample.

To show this mathematically we note gð1Þ is maximized when PðYi = 1jXi = kÞ is minimized for each 1< k%M. To determine when

PðYi = 1jXi = kÞ is minimized, we turn our attention to the b parameter of pprogenitorðj;bÞ. Let b be any parameterization of pprogenitor

such that pprogenitorðj;0Þ= 1
C, pprogenitor bð Þ�� ���� ��

N
/1 as b/N, and

d pprogenitor bð Þj jj j
N

db > 0. Note that

PðYi = 1jXi = kÞ =
X
j;Lj = i

 
pprogenitorðj;bÞP
j;Lj = ipprogenitorðj;bÞ

!k
This is minimized forc k (for example, by Lagrange multipliers) wh
en each of its constituent terms is 1
Ci
, so that pprogenitorðj;bÞ= 1

C i.e.,

b= 0.

To consider the effect of sampling, we resort to numerical simulations and consider a specific proliferation model given by

pprogenitorðj;bÞ= 1
ZðbÞ

�
1� j�1

C�1

	b

, which results in pprogenitorðj;bÞRpprogenitorðj + 1;bÞ without loss of generality. ZðbÞ=Pjpprogenitorðj;bÞ
is a normalizing constant. We simulate induction of an initial pool with N= 2000 alleles (the results are insensitive to N) drawn

from a uniform r, subsequent expansion using this proliferation model, followed by sampling of a different number of cells at

the final time point (resulting in different instances of f ). Figure S4B shows gðfÞ%1 for different values of f and b where each

data point is the mean of a 1000 simulations. The more uneven the proliferation rates (larger values of b), the less likely it is to

observe the same allele shared across multiple cells that arise from different progenitors. However, as the number of observed

cells increases (larger values of f ), even progeny from slowly-proliferating progenitors that were redundantly marked are more

likely to be observed.

In summary, if we assume that proliferation rates are not dependent on allele marking then:

1) The probability that cells that share a given allele at the final time point came from more than one progenitor is less than the

probability that more than one cell would have been labeled with the same allele in the initial population, if the number of cells

sampled is less than the initial population size. This means that psingletonði;CÞ
��
C=M

underestimates the probability that observed

cells share a unique progenitor and conversely pduplicateði;CÞ
��
C=M

overestimates the probability that the observed cells arise

frommultiple progenitors. Therefore, in practice, if the initial population sizeC is not known, computing psingletonði;CÞ
��
C=M

using

the number of sampled cells (in place of the unknown initial population size) is a conservative bound on the probability that

allele iis marking a unique clone, as long as M<C. In the case where M>C, the estimate is by definition more conservative

because it assumes more cells were initially labeled than was actually the case.

2) The more non-uniform the proliferation rates of progenitor cells, the more conservative we are in using psingletonði;CÞ
��
C=M

and

pduplicateði;CÞ
��
C=M

as bounds.

3) The fewer cells sampled at the final time point, the more conservative we are in using psingletonði;CÞ
��
C=M

and pduplicateði;CÞ
��
C=M

as bounds, achieving equality only in the limit of perfect sampling, where M[C.
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Statistical Significance of Alleles

Previous barcoding systems fail to account for the natural ubiquity of alleles, mistakenly attributing kinship to cells coincidentally

marked by the same allele. Since common alleles by definition occur in many cells, the number of cells implicated in these false-pos-

itive conclusions can be high. We circumvent this issue by assigning a p value to each allele, which quantifies statistical significance

of the allele according to the biological application, so that standard statistical best practices can be used.

Case 1: p value for marking clones when C is known or C<M. Consider the case where C, the number of cells initially labeled, is

known (or there is an estimate on the upper bound %M, the number of cells observed at the sampling time point). If at the sampling

time point, we observe at least one cell harboring allele i, Xi > 0, we would like to quantify the probability that the Xi cells arose from

more than one progenitor (Ci > 1) coincidentally marked with the same allele at the initial induction. If this probability is < a, we can be

confident at significance level a, that all Xi cells markedwith allele i, originated from a single progenitor. This probability is just pduplicate

introduced above, wherewe now use the approximation that the occurrence frequency of a given allele follows a Poisson distribution.

pduplicate i;Cð Þ=P Ci > 1j Xi > 0; li; Cð Þ=P Ci > 1 j Ci > 0; li; Cð Þ= 1� e�liC � liCð Þe�liC

1� e�liC
Note that conditional on allele i being observed, pduplicate does not
 depend on the number of cells observed (Xi). Given the number of

alleles and the distribution of their Poisson rates in the CARLIN system, for sufficiently large C, pduplicate will always be larger than a

preset significance level for some of the alleles. For example, at C= 5000, 72% of alleles are significant at a= 0:05, representing a

cumulative allele frequency probability of 20% so that a fifth of cells will be marked uniquely at this significance level (Figure 3I).

Case 2: p value for marking clones when M<C or C is unknown. In this case, we still seek to quantify the probability that Xi cells

arose from multiple progenitors, but without knowing the size of the initial pool. We assume that the Xis form an unbiased sampling.

The probability of observing more than one cell independently labeled with allele i conditioned on having observed the allele is

given by,

pclonalði;MÞ = PðXi > 1j Xi > 0; li; MÞ= 1� e�liM � ðliMÞe�liM

1� e�liM
Note that pclonal is just pduplicate evaluated atC=M, according to ou
r earlier justification (see Limitations of a Finite Number of Alleles for

Uniquely Marking Clones) and constitutes an upper bound on the probability (a conservative p value). We separately annotate this as

pclonal instead of pduplicate to make clear that in this case, we have no knowledge of C or Ci.

As M grows, we are more likely to sample redundantly marked cells. Once MR35;000, even the most rare allele is expected to

mark multiple progenitors at significance level a= 0:05. The upper limit on M is determined by the smallest Poisson rate in our

bank, the mean rate assigned to the unobserved alleles. Although there is actually a distribution of rates for unobserved alleles,

we still cannot theoretically go beyond the limit imposed by the mean (as we cannot actually associate an unobserved allele to a

particular rate in this distribution). This regime is indicated in gray in Figure 3I. We use this p value for all our SC analysis where

M< 1500.

Case 3: p value for allele frequency. Lastly, we define a p value that quantifies the probability of observing allele i expressed in Xi

cells or more, under the null model that the allele has Poisson rate parameter li.

pfrequencyði;MÞ = PðXRXij Xi > 0; li; MÞ= 1�PXi�1
k = 0

ðliMÞke�liM

k!

1� e�liM
If pfrequencyði;MÞ<a, this means that cells marked with allele i are s
ignificantly over-represented in a library ofM cells (at significance

level a). This does not necessarily indicate that all cells expressing the allele are related. However, it does indicate that at least one

progenitor marked with the allele expanded more compared to progenitors marked with other alleles. The more skewed the prolif-

eration rates ðb/N according to notation introduced in Limitations of a Finite Number of Alleles for Uniquely Marking Clones), the

more likely the over-representation is due to a single progenitor.

Statistically Significant Clones for SC Analysis

An allele was determined to be statistically significant if it had a pclonal that survived multiple hypothesis testing using the Benjamini-

Hochberg procedure at a false discovery rate (FDR) of 0.05. A clone (a group of cells marked with the same allele) was said to be

statistically significant, if its allele was statistically significant. For the 5-FU experiments, the number of observed cells (M) was set

separately for each sample to equal the number of cells with an edited CARLIN allele in that sample (Table S4). For the embryonic

induction experiment, the number of observed cells ðMÞ was the total number of cells with an edited CARLIN allele across the

four bones (Table S4).

Comparing Progeny Origin in Development and Adult Hematopoiesis

To quantify what fraction of statistically significant clones included both HSCs and non-HSCs, we computed the proportion of sta-

tistically significant alleles that marked cells belonging to both the HSC and non-HSC clusters for each sample. For the controls, we

aggregated this proportion over the three controls as an average of the three proportions, weighted by the number of statistically
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significant alleles in each control. We similarly computed an aggregated proportion over the two 5-FU mice. We performed a two-

proportion z-test for the alternative hypothesis that the proportion is larger in the developmental/adult hematopoiesis than in the con-

trol, rejecting at significance level a= 0:05.

To quantify what fraction of the observed non-HSCs share an allele with an observed HSC (i.e., belong to an HSC-rooted clone) in

the embryonic induction and 5-FU experiments, we computed the proportion of cells in non-HSC clusters that had a statistically

significant allele which also appeared in a cell found in the HSC cluster for each sample. For the controls, we aggregated this pro-

portion over the three controls as an average of the three proportions, weighted by the number of non-HSCsmarked with statistically

significant alleles in each control. We similarly computed an aggregated proportion over the two 5-FU mice. We performed a two-

proportion z-test for the alternative hypothesis that the proportion is larger in development/adult hematopoiesis than in the control,

rejecting at significance level a= 0:05.

Comparing Number of Clones in Development and Adult Hematopoiesis

To determine if there were significantly fewer statistically significant clones in a 5-FU treatedmouse, relative to a negative control, we

first selected cells belonging to statistically significant clones. LetM0 be the minimum of the number of selected cells across the two

treatments. We sampledM0 cells with replacement from each pool of selected cells, and counted the number of observed alleles. We

repeated this procedure 10,000 times to get a distribution of the number of observed alleles in the two treatments. We performed a t

test for the alternative hypothesis that the mean of the number of observed alleles is less in the 5-FU treated sample at a significance

level of a= 0:05. We conducted this test pairwise between each 5-FU treated and control mouse (see Table S5).

Comparing Clone Size Distributions in Development and Adult Hematopoiesis

To determine if the averageHSC-rooted clone size is significantly larger in a 5-FU treatedmouse, relative to a negative control mouse,

we selected cells marked by statistically significant alleles that also appear in at least one cell belonging to the HSC cluster. LetM0 be
the number of selected cells in a given treatment. We sample M0 cells with replacement, and divide M0 by the number of alleles

encountered in the sample, to compute the average HSC-rooted clone size. We repeat this procedure 10,000 times for each treat-

ment, and perform a t test for the alternative hypothesis that the average HSC-rooted clone size in the 5-FU treatedmouse is larger at

a significance level of a= 0:05. We conducted this test pairwise between each 5-FU treated and control mouse (see Table S5).

To determine if the distribution of HSC-rooted clone sizes was significantly non-uniform, we selected cells marked by statistically

significant alleles that also appear in at least one cell belonging to the HSC cluster. SupposeM0 cells are selected in a particular sam-

ple in this fashion, yielding N% M0 alleles. Let Lj˛f1.Ng, 1%j%M
0
, be the allele label of cell j. We sampleM0 cells with replacement

from this selected set of cells, and construct a CDF over the occurrence frequency of sampled allele labels Xi =
PM

0

j = 1dLj ; i. We also

sample allele labels M
0
times from a discrete uniform distribution with N bins, and again construct a CDF over the occurrence

frequency of allele labels. We compute the p value associated with the KS-statistic derived from comparing these two CDFs. We

repeat this procedure 10,000 times, and report the 99th percentile for the p value distribution (see Table S5).

Statistical Significance of Bone/Fate Bias

To quantify whether an allele i displays significant fate bias, we consider the deviation of the observed number of cells marked with

allele i, (fi;1;.fi;B), across B possible bins (representing bones or phenotypes), against a multinomial null distribution given by

PðNi =
PB

j = 1fi;j; p1; .; pBÞ. For the embryonic induction dataset, we tested fate bias over different bones (B= 4). We also tested

for bias over phenotypes, annotated from the Louvain clusters as defined in Figure 5B (B= 5; the lymphoid cluster which only had

a few dozen cells was omitted), for each bone separately and pooling across bones.

The bin probabilities are the maximum likelihood estimators found by normalizing frequency counts after pooling all edited alleles,

so that pj =

P
i
fi;jP

j

P
i
fi;j
. The fate bias p value that is reported is the probability under the null model of the range (the difference between

the largest and smallest frequency across the bins for each allele) being greater or equal to the range observed. We compute this

probability exactly according to the method described in (Corrado 2011). We note that while this method does not require that all

bins have equal probability, using this measure to test bias is prone to false negatives when there is a large skew in bin probabilities,

since the range does not take into account whether the maximum frequency occurred at a bin with low probability; in our data, all the

bins (whether they are bones or coarse-grained phenotypes), have roughly the same probability. We only report fate bias p values for

statistically significant alleles (as defined in Statistically Significant Clones for SC Analysis) and reject at significance level a= 0:05

(Bonferroni-corrected on the number of statistically significant alleles).

Equivalence Testing for SC Amplicon Protocol Reproducibility

To quantify the reproducibility of our single-cell CARLIN amplicon protocol, we prepared libraries in duplicate starting from the same

single-cell transcriptome library for the samples in the 5-FU experiment. We performed equivalence testing on the frequency distri-

bution of alleles (edited and unedited) called by the CARLIN pipeline, when applied independently on these replicates (Figure S6A).

We used the KS-statistic at a test value of 0.05 to determine whether two replicates are equivalent. We performed 10,000 bootstrap-

ping trials, and computed the KS-statistic for each trial, to obtain a distribution over all trials. For all samples, the one-sided 1� að Þ
confidence interval excluded the test value of 0.05, so replicates are said to be equivalent at significance level a= 0:05. The results

presented in themain text and Figure 6, were generated by pooling the sequencing data from the replicates, and running the CARLIN

pipeline on the combined data.
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Lineage Reconstruction
Wepool together all cells/transcripts across all libraries/tissues, so that the reconstruction is agnostic to the origin of the alleles in the

data. We use the specific details of mutations called in the alleles (seeMutation Calling) to establish a hierarchy across the alleles and

thereby obtain a simplified phylogeny tree.

Filtering Alleles

For the in vivo data, we discarded alleles whose pfrequency did not satisfy an FDR threshold of 0.05 under the Benjamini-Hochberg

procedure. The number of observations, M, used in computing pfrequency, was the total number of edited transcripts after pooling

the data. We used pfrequency as opposed to pclonal because even if we are not confident that all cells that share a given allele came

from the same progenitor, the relative expansion of one allele compared with another contains important information about clonal

expansion across different tissues.

Tree Reconstruction Algorithm

Here, we describe a simple tree reconstruction algorithm used as a proof of concept for lineage tracing in the CARLIN system. Since a

primary contribution of this paper is not in the domain of tree reconstruction, we defer investigation of how more sophisticated

schemes like those newly developed in (Feng et al., 2019) may improve the analysis.

For this algorithm, we make two assumptions, both of which are justified empirically by the data (see Figure 2D):

1) Both leaf and internal nodes of the tree can only be occupied by alleles observed in the sample. Since the efficiency of Cas9

is not 100%, we expect that every allele found after editing round T will also be present after editing round T + 1, because

not every cell marked with a particular allele is further modified. The task of tree reconstruction is therefore simplified from

inference of a novel set of mutations harbored by internal nodes, to identification of alleles which could likely be the internal

nodes. In this scheme, we note that an allele must appear as a leaf node exactly once. Some leaf nodes may additionally

appear once as an internal node with the same allele. In such cases, the internal node will always appear as a parent to the

leaf node.

2) A child allele may only differ from its parent allele by either having additional mutations to those harbored by its parent, and/or

possessing a subsuming deletion, whose endpoints are located at pristine target sites in the parent. The subsuming deletion

would remove any history of parental mutations between deletion endpoints. This assumption therefore requires that there

are no repair mechanisms, precluding the possibility of mutations that are observed in the parent at sites that are unmodified

in the child.

Assumption (2) allows us to determine whether any pair of alleles fall along the same lineage, in which one allele could be an

ancestor of the other. Given a list of n alleles (including the unmodified reference), we construct an n x n Boolean matrix A where

Ai;j = 1 if allele j can be a descendent of allele i. We subsequently set to zero some of the non-zero entries using the following rules:

1) Frequency Criteria:We setAi;j = 0 if the number of cells with allele j is larger than the number of cells with allele i. We impose this

criteria, consistent with Assumption (1), because we expect the number of cells with the parent allele to exceed the number of

cells with the child allele for two reasons: (i) the cutting efficiency is typically << 100% so that the parent allele remains sub-

stantially represented among cells and (ii) multiple distinct outcomes can result from additional modifications to a starting

allele, so that a single child allele is unlikely to become more prevalent than the parent, its prevalence being diluted by its

siblings.

2) Maximum Mutation Preservation: For each child allele that can potentially be descended from multiple parent alleles, only the

candidate parent alleles that share themaximum number of mutations with the child allele are retained as the potential parents,

and the other entries are set to zero. This entails that the number of mutations required to transform from parent to child allele is

the minimum among possible parents, based on the reasoning that multiple editing events leading to a child allele are more

unlikely than a single editing event. This criterion ensures that a given allele ismost likely to be connected to its nearest ancestor

so that matrix A can be interpreted as the set of parent-child relationships.

3) Alleles that have no parent allele after this pruning procedure are linked to the reference allele at the root of the tree.

A limitation of CARLIN is that alleles exhibiting large deletions could potentially be descended from almost any parent allele. In

these cases, we have no choice but to connect the allele to the root of the tree as the lineage information in the allele is lost. However,

such alleles are generally common in the bank and are therefore likely to be filtered out using our statistical significance tests (Fig-

ure 4B; Filtering Alleles).

Even after the pruning procedure, a given allele can still have multiple parent alleles. To construct a consensus tree from these

potentially contradictory lineage relationships, we generate an ensemble of trees, by running simulations in which we probabilistically

sample the parent edges of children with multiple candidate parents.

The tree is reconstructed recursively as follows: given a partially reconstructed tree and the current node, we randomly select one

of the remaining unplaced alleles that is a child of the current node according to the A matrix. We attach the selected allele to the

current node as its child. The added node then becomes the current node. When none of the remaining unplaced alleles is a valid

child of the current node, we backtrack by setting the current node to be the parent node. We initialize the algorithm by starting

with the reference allele as the current node (defined as the root of the tree). Lastly, we include a leaf node for each internal node.
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Consensus Tree

To determine lineage relationships that are conserved across our simulated trees, we focused on nodes that occur closer to the root,

reasoning that they are less variable across different reconstructions and carry more information because they havemore cells asso-

ciated with their alleles (due to the frequency criteria).

The depth of a given node is one less than the number of nodes on the path from the root to the node. Define a depth-X rooted path

for a given internal node at depth-X, to be a sequence of alleles occurring on the path from the root of the tree (depth-0) to the internal

node. We tabulate the number of times we observe a particular depth-X rooted path over the ensemble of trees. In addition, for each

simulation in which the depth-X rooted path occurs, we tabulate the sum of the frequency of the alleles (referred to as the clade pop-

ulation) of all the leaves that descend from the terminating node of the path. Over the ensemble of trees, we obtain a distribution of

clade populations for each depth-X rooted path.

We consider a depth-X rooted path to be stable if it appears in fraction f of the simulated trees. For the reconstructions presented in

the paper, we used f = 1, and constructed a consensus tree by aggregating all stable depth-X rooted paths, for X%3. We chose f = 1

by rank-ordering the occurrence frequency of the rooted paths of a given depth across all simulated trees (Figures S4C and S4D) and

observing that (i) the top-ranked paths occurred across all simulations, (ii) the occurrence frequency decayed rapidly for paths that

don’t appear in all simulations, and (iii) the clade populations associated with the paths that did not occur in all simulations were not

substantial.

Given our choice of f = 1, the same consensus tree could have been reconstructed by simply removing child alleles that had mul-

tiple potential parents in the A matrix. In general, other choices of f permit reconstruction of trees with contradictory lineage

information.

Since there is no contradictory lineage information for f = 1, the consensus tree can be visualized unambiguously. For aesthetic

reasons, in Figures 2D and 4D we omitted display of depth-1 rooted paths whose terminal nodes are leaves with a minimum clade

population across simulations less than 100.

Tissue Distance

We use the same tissue distance metric outlined in Feng et al. (2019). In short, for the consensus tree, we compute the distance be-

tween tissues i and j by first identifying all leaves corresponding to alleles found in tissue i. For each allele, we compute the distance to

its closet ancestor which has a progeny allele that was found in tissue j (one less than the number of nodes along the path connecting

the leaf to the internal node). Next, we average this distance over all alleles for tissue i. We weight each term in the average by the

product of the number of cells found in tissue i marked by the leaf allele and the number of cells found in tissue j marked by progeny

alleles of the closest ancestor. In Figure 4H we show the matrix obtained from this procedure after symmetrization.

Transcriptomic Analysis and Visualization
After discarding cells with few UMIs and high expression of mitochondrial genes (see Preprocessing), the resulting gene expression

matrices were processed using Seurat (v3.1.2 with default parameters except where indicated) as follows (Stuart et al., 2019). First,

cell cycle scores were assigned to each cell using the CellCycleScoring function. Next, UMI counts were normalized according to a

regularized negative binomial regression model while regressing out the effect of cell cycle and mitochondrial genes (using the

SCTransform function with vars.to.regress = c(‘‘percent.mt,’’ ‘‘S.Score,’’ ‘‘G2M.Score’’)).

The 4 bones of the embryonic induction dataset were aligned (and similarly the 5-FU and control samples), by finding 2000 com-

mon features using the FindIntegrationAnchors function, and specifying these, together with marker genes (Figures 6D and S5E), as

landmarks to the IntegrateData function (Figures 6B and S5C). Joint dimensionality reduction was performed on the aligned datasets

using RunPCA. Points in this embedding were used to construct UMAP plots (RunUMAP), and find neighbors for clustering (Find-

Neighbors). For all relevant functions, 30 principal components were used.

FindClusters (algorithm= 2, resolution = 1.5) was used to run the Louvain clustering algorithmwithmultilevel refinement (Figures 6C

and S5D). The dot plots in Figures S5E and S6D were generated using data from Seurat’s DotPlot function. Differential gene expres-

sion was performed using the FindMarkers function, whose output when applied to our data is shown in Table S6.

To test whether proliferation markers alone could be used to predict parent and childless HSCs, we assigned all cells in the HSC

clusters a proliferation score (using AddModuleScore on the following gene list:Mki67,Pbk,Birc5,Ube2c, Top2a, Tk1,Aurkb,Cdkn3,

Cenpf,Cdk1, Zwint). We designated HSCs in the upper (lower) quartile as highly (lowly) proliferating HSCs. We performed a two-pro-

portion z-test for the alternative hypothesis that the proportion of highly proliferating HSCs is larger in the parent HSCs than in the

childless HSCs, rejecting at significance level a= 0:05. We also performed a two-proportion z-test for the alternative hypothesis

that the proportion of highly proliferating HSCs is larger among cells belonging to the parent HSC cluster group than among cells

belonging to the childless HSC cluster group, rejecting at significance level a= 0:05.

Visualization of differentially expressed genes was handled using Seurat’s VlnPlot function for Figures 6G and S6I and S6J, and

DoHeatmap function for Figure 6H.
e18 Cell 181, 1410–1422.e1–e18, June 11, 2020



Supplemental Figures

Figure S1. Additional Quantification of Editing in ESCs, Related to Figures 1 and 2

A. Fragment analysis results indicating cutting efficiency of individual sgRNAs.

B. Schematic of inducible CARLIN system, created with BioRender.

C. Chord plots of CARLIN alleles at 24h, 48h, and 72h (left to right) in the absence of doxycycline (Dox), as in Figure 1F.

D. Chord plots of CARLIN alleles at 12h, 24h, and 48h (left to right) after induction with 0.20 mg/mL (medium) of Dox, as in Figure 1F.

E. Chord plots of CARLIN alleles at 12h, 24h, and 48h (left to right) after induction with 1.00 mg/mL (high) of Dox, as in Figure 1F.

F. From left to right, fraction of cells edited, diversity index (see STARMethods), and average base pairs deleted in CARLIN alleles across edited cells, for chronic

induction experiments shown in Figures 1G and 1H. Legend as in Figures 1G and 1H

G. Fraction of cells edited (top left), CARLIN potential (top right; see STARMethods), diversity metrics (middle row), average base pairs deleted in CARLIN alleles

across edited cells (bottom left), and frequency distribution of mutation counts (bottom right) for the pulsed induction experiment shown in Figure 2A.
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Figure S2. Comparison of CARLIN Analysis Pipeline with NW Alignment and Fragment Analysis, Related to STAR Methods

A. Frequency of indels, deletions and insertions called using the standard Needleman-Wunsch (NW) and the CARLIN algorithm, when applied to the CARLIN

sequences of alleles in the bank. For the series labeled ‘Unmerged’ we refrained from merging mutations (STAR Methods).

B. Frequency of indels, deletions and insertions called as a function of their location along different motifs on the CARLIN array. Repetitions of the same motif in

target sites are overlaid. Relative to the NW algorithm, the CARLIN algorithm tends to cluster mutations more frequently at the expected cutsites. Shading as in

Figure 1B.

C. CDF of the difference between the NW score of the optimal alignment produced by the NW algorithm and the optimal alignment produced by the CARLIN

algorithm. About half the alleles in the bank have alignments that match the NW algorithm. The remainder would have been discarded as suboptimal by the NW

algorithm.

(legend continued on next page)
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D. Comparison of fragment lengths as measured by fragment analysis (STAR Methods), and the frequency-weighted distribution of allele lengths called by the

CARLIN pipeline applied to Next Generation Sequencing data. The data correspond to four time points from the three doxycycline concentrations used in the

chronic induction experiment shown in Figures 1G and 1H.
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Figure S3. Mutations in Different Tissues and Additional Details of the Allele Bank, Related to Figure 3

A. Site decomposition plot for the tissues shown in Figure 3B, under doxycycline (Dox) induction, as in Figure 3D, which shows results for granulocytes comprising

the bank.

B. Blood,mesenchymal and epithelial cells were sorted from different tissues of two induced 8-12-week old CARLIN/Cas9mice and the proportion of edited RNA

transcripts was assessed by bulk RNA sequencing.

C. Distribution of observed allele frequencies for the bank. The top-ranked allele is the unedited reference.

(legend continued on next page)
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D. (Top) Distribution of allele frequencies as in (C) and (bottom) the 50 most common edited alleles as in Figure 3C for a –Dox control obtained by harvesting

�310K granulocytes from each of two uninduced mice.

E. (Top) Distribution of allele frequencies as in (C) and (bottom) all edited alleles as in Figure 3C for a –Cas9 control obtained by harvesting �125K granulocytes

from a single mouse.

F. (Top) Distribution of allele frequencies as in (C), (middle) the 50most common edited alleles as in Figure 3C, (bottom left) site decomposition plot as in Figure 3D,

and (bottom right) histogram of mutation frequencies as in Figure 3E, obtained from harvesting granulocytes from two Dox-induced iCARLIN mice (STAR

Methods).
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Figure S4. Additional Details of Allele Diversity and Lineage Tree Reconstruction Simulations, Related to Figures 2, 3, and 4

A. 120K granulocytes were harvested from each of two doxycycline-induced mice as done for the preparation of the allele bank (see Figure 3A). To corroborate

that the false positive rate predicted by our statistical framework bears out in an in vivo experiment, we compare how frequently CARLIN alleles appear across the

biological replicates. We sample with replacement the number of edited cells indicated along the x axis, with half the cells drawn from each mouse. (Top) The

membership of the detected alleles across the mice. (Middle) pclonal (see Methods) for alleles shared between mice (red markers) is generally larger than for those

found in a single mouse (blue markers). (Bottom) The fraction of alleles found in both mice satisfying pclonal <a, for a significance level a= 0:05. Errorbars are the

standard deviation of this fraction derived from repeating the sampling procedure for 1000 trials.

B. (Top) Lower bound on the probability of observing an allele marking cells belonging to a unique progenitor (psingleton ; see STARMethods) for different numbers

of observed cells, in the case of equally likely alleles. As the number of cells observed increases, the chance of observing cells that coincidentally share the same

allele increases. This effect is counteracted by increasing the number of alleles available (different colored traces). (Bottom)Whenmultiple progenitors aremarked

with the same allele, the more uneven the proliferation rates (larger values of the b parameter in the proliferation model, see STAR Methods), the less likely it is to

observe the same allele shared across multiple cells that arise from different progenitors (see STAR Methods for definition of gðfÞ). However, as the number of

observed cells increases (increasing f , see STAR Methods), even progeny from slowly-proliferating progenitors that were redundantly marked are more likely to

be observed, so that the fraction of alleles that ambiguously mark the ancestry of observed cells increases.

C. Number of instances (blue) of rooted paths (STARMethods) of depth 1-3 (left to right), found across 10,000 simulations for the in vitro tree reconstruction shown

in Figure 2D.We deem a rooted path stable if it is found in all 10,000 simulations. In orange, we show themedian clade population (across all simulations in which it

appears) for each rooted path (STAR Methods). Error bars (shaded) are min/max across the simulations.

D. Same as in (C) but for the in vivo tree reconstruction shown in Figure 4D.
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Figure S5. FACS Plots and Extended Data For Embryonic Induction Experiment, Related to Figures 5 and 6

A. FACS strategy used for sorting cells for encapsulation from bone marrow (BM) in the embryonic induction experiment (Figure 5) and control 5-FU experiment

(Figure 6).

B. FACS strategy used for sorting cells for encapsulation from BM in the 5-FU experiment (Figure 6).

C. Overlay of transcriptome data from the 4 separate bones following batch correction.

D. Unsupervised Louvain clustering on the aligned transcriptomes from the 4 bones used in the embryonic induction experiment, generated 36 distinct clusters.

E. Dot plots of canonical blood cell-type specific markers used for fine-grain cell annotations of each Louvain cluster (HSC, hematopoietic stem cell; MPP,

multipotent progenitor cell; MyP, myeloid progenitor; Neu, neutrophil; Mono, monocyte; DC, dendritic cell; Ba, basophil; Eos, eosinophil; Mk, megakaryocyte;

Ery, erythrocyte; Ly, lymphoid cell). MyP, Neu, Mono, DC, Ba and Eos were further grouped to form the coarse-grained clusters shown in Figure 5B. Colors

correspond to the average z-score of log-normalized expression values across cells in a cluster.
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(legend on next page)
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Figure S6. Extended Data for 5-FU Experiment, Related to Figure 6

A. The libraries for the 5-FU experiment (Figure 6) were prepared in replicate to analyze reproducibility. Each point corresponds to the proportion of cells in each

replicate in which a given allele is found. Points shown in blue correspond to alleles found in both replicates, while points shown in red correspond to alleles found

in a single replicate. For visualization purposes, the point corresponding to the unedited reference allele has been omitted and jitter has been added to distinguish

stacked points.

B. Overlay of transcriptome data from three control and two 5-FU treated animals following batch correction (STAR Methods).

C. Unsupervised Louvain clustering after aligning the transcriptomes of the 5-FU and control samples generated 34 distinct clusters. The parent HSC cluster

group was formed from clusters 0 and 2. The childless HSC cluster group was formed from clusters 17 and 19.

D. Dot plots of canonical blood cell-type specific markers used for cluster annotation in 5-FU and control mice, using the same two-tier scheme described in

Figure S5E.

E. Number of statistically significant clones in the second control and second 5-FU treated mouse after downsampling the control mouse to have the same

number of cells marked by statistically significant alleles as the 5-FU treated mouse. Color scheme as in Figure 6C.

F. Statistically significant CARLIN alleles overlaid onto the transcriptome for the second control and 5-FU treated mouse, as in Figure 6D.

G. Violin plot showing the distribution of the number of cells in statistically significant HSC-rooted clones in the second control and second 5-FU treated mouse,

as in Figure 6E.

H. Heatmap indicating occurrence frequency of statistically significant alleles across different cell types in the second control and 5-FU animals, where the

number of clones has been downsampled in the control mouse to match the number of clones in the 5-FU animal.

I. Violin plots of selected genes differentially overexpressed in the HSC parent cluster group relative to the HSC childless cluster group, as in Figure 6G.

J. Violin plots of selected genes differentially underexpressed in the HSC parent cluster group relative to the HSC childless cluster group, as in Figure 6G.
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