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Cross Talk and Interference Enhance Information Capacity of a Signaling
Pathway
Sahand Hormoz*
Kavli Institute for Theoretical Physics, University of California–Santa Barbara, Santa Barbara, California
ABSTRACT A recurring motif in gene regulatory networks is transcription factors (TFs) that regulate each other and then bind
to overlapping sites on DNA, where they interact and synergistically control transcription of a target gene. Here, we suggest
that this motif maximizes information flow in a noisy network. Gene expression is an inherently noisy process due to thermal
fluctuations and the small number of molecules involved. A consequence of multiple TFs interacting at overlapping binding sites
is that their binding noise becomes correlated. Using concepts from information theory, we show that in general a signaling
pathway transmits more information if 1), noise of one input is correlated with that of the other; and 2), input signals are not
chosen independently. In the case of TFs, the latter criterion hints at upstream cross-regulation. We demonstrate these ideas
for competing TFs and feed-forward gene-regulatory modules, and discuss generalizations to other signaling pathways. Our
results challenge the conventional approach of treating biological noise as uncorrelated fluctuations, and present a systematic
method for understanding TF cross-regulation networks either from direct measurements of binding noise or from bioinformatic
analysis of overlapping binding sites.
INTRODUCTION
Accurate transmission of information is of paramount
importance in biology. For example, in the process of
embryonic development, crude morphogen gradients need
to be translated into precise expression levels in every cell
and sharp boundaries between adjacent ones (1,2). The
embryo accomplishes this using a complex network of
signaling molecules that regulate not only the expression
level of the desired output gene but also each other. One
simple strategy for increasing accuracy is to use multiple
input signals. Indeed, frequently, the expression level of a
single gene is controlled by multiple transcription factors
(TFs) (take, for example, bicoid and hunchback, or dorsal
and twist, in the Drosophila embryo (1,3,4)). These TFs,
however, often have overlapping binding sites that result
in interactions at binding and synergetic control of transcrip-
tion (3,4).

Here, we suggest that interaction at the level of binding
(interference) is related to the upstream network of TFs
regulating each other (cross talk). Our main assumption is
that the regulatory network is designed to optimize infor-
mation transfer from the input (TF concentrations) to the
output (gene expression level). This is a reasonable assump-
tion in the case of development, where accurate positional
information needs to be extracted from noisy morphogen
concentrations (2).

First, we define the concept of a cis-regulatory network as
a noisy communication channel, where the input encodes
information by taking on a range of values, i.e., a morphogen
gradient that carries positional information. Decoding this
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information is subject to biological noise; for example, at
the molecular level, the stochastic binding of morphogens
to receptors makes an exact readout of their concentration
impossible.

We show that in general, two input signals with correlated
noise can transmit more information if they are not indepen-
dent information carriers but are chosen from an entangled
joint distribution, i.e., the concentration of one morphogen
in a given cell is related to the concentration of another.
Physically, this implies that the two inputs regulate each
other upstream through cross talk. We demonstrate this by
analyzing a simple model of two TFs competing for the
same binding site. The competition at the binding site
results in correlated binding/unbinding fluctuations. Solving
for the optimal joint distribution of the input TF concentra-
tions indicates that upstream, one is positively regulated by
the other. Despite the increase in noise for each individual
input from the competition, two interacting TFs can transmit
more information than two noninteracting TFs because
of 1), correlated noise in the inputs, and 2), an entangled
optimal input distribution.

We suggest that this mechanism is consistent with the
recurring strategy of the feed-forward motif, where one
TF positively regulates another and both bind to partially
overlapping sites that induce interactions. We confirm
this claim by simulating the stochastic dynamics of all
structural types of the feed-forward loop that are subject
to correlated input noise. Three specific biological examples
are discussed: joint regulation of the gene Race in the
Drosophila embryo by the intracellular protein Smads
and its target, zen; regulation of even-skipped stripe 2 by
bicoid and hunchback; and regulation of snail by dorsal
and twist. Generalization to other forms of cross talk,
such as cross-phosphorylation, and to other forms of
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interference, such as the use of scaffold proteins, is also
discussed.

The structure of this article is as follows. In the Results
section, we first establish that in general, two input signals
with correlated noise can transmit more information if their
input joint distribution is not separable. We then consider
a model of two TFs competing for the same binding site.
We calculate analytically the noise correlations and the
associated optimal input distribution. In some regimes,
competing TFs outperform independent ones. Motivated
by this finding, in the last subsection of the Results, we
ask whether realistic gene regulatory modules can generate
close-to-optimal input distributions and combine correlated
inputs to maximize information transmission. We compute
numerically the channel capacity for feed-forward loops,
where joint regulation of the target gene is subject to generic
correlated noise; noise correlations in these simulations are
a parameter used to generalize the results beyond competing
TFs. Relevant biological examples are considered in the
Discussion.
Gene regulation as a communication channel

Regulatory networks in a cell are information-processing
modules that take in an input, such as concentration of
a nutrient, and generate an output in the form of a gene
expression level. Information in the input is typically en-
coded as the steady-state concentration of a TF, c, which
binds to the promoter site of the desired response gene
and enhances or inhibits its transcription. At a molecular
level, the process of binding is inherently noisy, subject
to thermal agitations and low-copy-number fluctuations
(5–7). The noise is captured through a probabilistic relation-
ship between the TF concentration, c, and the gene expres-
sion level, g, PðgjcÞ. The detailed form of PðgjcÞ depends on
physical parameters such as binding and unbinding rates.
We can think of this process as communication across
a noisy channel (8). To alleviate the impact of the noise,
various strategies can be adopted, such as limiting the input
to sufficiently spaced discrete concentration levels, ci, that
result in nonoverlapping outputs. In many gene regulatory
networks, spatial and temporal averaging of input signals
are also used to reduce noise (9).

Shannon’s channel coding theorem (10,11) tells us the
maximum rate at which information can be communicated
across a noisy channel, also referred to as the channel
capacity. Throughout this work, we assume that gene
regulatory networks are selected to optimize the rate of
information transmission. This is a strong but reasonable
assumption; for example, the cell will clearly benefit from
a more accurate knowledge of the amount of nutrient in
its environment. However, the cost of an optimal network
can exceed the benefit of more accurate information.
Here, we do not account for the cost of a network—the
only metric for comparison is the channel capacity.
With knowledge of the nature of the noise in a channel,
PðgjcÞ, it is possible to compute the probability distribu-
tion of the input signal, P�

TFðcÞ, that maximizes the rate
of information transmission. Essentially, this distribution
tells the sender how often a particular TF concentration
should be used for optimal transmission of information
encoded in concentration. However, it does not tell the
sender anything about the encoding and decoding schemes.
This abstraction is useful, allowing us to compute the
optimal input without having derived the optimal coding.
However, the optimal coding might require input blocks
of infinite size and complex codebooks, with little biolog-
ical relevance.

Nevertheless, there are experimental observations consis-
tent with the idea of regulatory systems maximizing infor-
mation transmission rates. Tkacik et al. (12) have shown
that experimental measurements of Hunchback concentra-
tion in early Drosophila embryo cells (9) show a distribution
that closely matches the optimal frequency for the measured
levels of noise in the system; with the system achieving 90%
of its maximum transmission rate.
METHODS

Competing-TFs binding model

The fractional occupation of the binding site by TF i ðniÞ satisfies the kinetic
equation

dniðtÞ
dt

¼ kcið1� n1 � n2Þ � lni þ xni i ¼ 1; 2;

where k, ci, and l are the on rate, TF concentration, and off rate, respec-

tively. The Langevin noise term, xni , introduces uncorrelated fluctuations:

hxni ðtÞi ¼ 0 and hxni ðtÞxnj ðt0Þi ¼ D2
i dijdðt0 � tÞ. For independent TFs, the

first term on the righthand side is modified to kcið1� niÞ. For the results

quoted and displayed (see Fig. 4) in the Results section ‘Integration time

and cooperativity’, above stochastic differential equations were numeri-

cally integrated using the Euler-Maruyama method (13) discretized with

dt ¼ 0.01 for the parameters k ¼ 1, c1;2 ¼ 0:01, l ¼ 10�4, and

D2
i ¼ kcið1� n1 � n2Þ þ lni ¼ 2lni. ni denotes the average steady-state

value of ni. The power spectral density is computed using the Wiener-Khin-

chin formula, SiðuÞ ¼ 1=Thj R T
0
niðtÞe�iutdtj2i (14).
Feed-forward-motif kinetic equations

The concentrations of Y and g are given by the kinetic equations (15–17)

dY

dt
¼ by f

�
X þ zx;Kxy

�� ayY þ hy

dg

dt
¼ bgF

�
X þ xx;Kxg; Y þ xy;Kyg

�� aggþ hg:

f can be an activator, f ðx; kÞ ¼ ðx=kÞH=ð1þ ðx=kÞHÞ, or a repressor,

f ðx; kÞ ¼ 1=ð1þ ðx=kÞHÞ, where H is the Hill coefficient. Kij is the regula-

tion coefficient of gene j by TF i. For an AND-gate, Fðx; kx; y; kyÞ ¼
f ðx; kxÞf ðy; kyÞ, and an OR-gate: F ¼ foðx; kx; y; kyÞ þ foðy; ky; x; kxÞ, where
for an activator, foðx; kx; y; kyÞ ¼ ðx=kxÞH=ð1þ ðx=kxÞH þ ðy=kyÞHÞ, and

for a repressor, foðx; kx; y; kyÞ ¼ 1=ð1þ ðx=kxÞH þ ðy=kyÞHÞ.
Biophysical Journal 104(5) 1170–1180
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The upper equation captures cross-regulation of TF Y by TF X. The

output noise is captured by the Langevin term hy. The input noise—from

fluctuations in the readout of the TF X concentration due to binding fluctu-

ations, diffusion noise, etc.—is captured by the phenomenological noise

term zx . The noise in cross-regulations is an extrinsic noise in the system,

since our channel is defined as the joint regulation of gene g by TFs X

and Y (lower equation).

The intrinsic noise contains the output noise in synthesis and degradation

fluctuations—shot noise—in g, captured by the Langevin term hg. The

intrinsic input noise is due to fluctuations in the readouts of the TF concen-

trations X and Y, which determine the synthesis rate of g through the Hill

function F. The inputs of F fluctuate from the true concentrations of X

and Y by stochastic terms xx and xy, respectively.
Phenomenological noise

We neglect the contribution of extrinsic noise, hy ¼ zx ¼ 0; keeping

it does not change the results qualitatively. The intrinsic input noise

in the TF concentration readout satisfies hxx;yðtÞi ¼ 0 and a general

phenomenological form for TF concentration variance set by a constant

term and one proportional to the TF concentration, since regardless of

microscopic details, this noise stems fundamentally from finite, dis-

crete, and fluctuating molecule numbers: hxxðtÞxxðt0Þi ¼ ðeþ qXÞdðt0 � tÞ,
hxyðtÞxyðt0Þi ¼ ðeþ qYÞdðt0 � tÞ. The input noise can be correlated:

hxxðtÞxyðt0Þi ¼ rq
ffiffiffiffiffiffi
XY

p
dðt0 � tÞ, where r is the noise correlation coefficient,

which is assumed, for simplicity, to be independent of the TF concentra-

tions. A more complex structure for r—for instance, with concentration

dependence as in the case of competing TFs—does not change the

results qualitatively. ε is a small constant that ensures a minimum

noise of one TF molecule/cell. For the output noise, hhgðtÞi ¼ 0 and

hhgðtÞhgðt0Þi ¼ ðeþ qgÞdðt0 � tÞ.
Numerical simulations

The initial conditions are at time t¼ 0, Y¼ 0 and g¼ 0. X¼ c1 for all times

t R 0. The above stochastic differential equations were numerically inte-

grated using the Euler-Maruyama method (13) from t ¼ 0 to t ¼ 10

discretized with dt ¼ 0.001. Output statistics were gathered after the steady

state was reached, the last 3000 time steps, for 1000 runs. The numerical

integration was implemented in MATLAB R2011a.
Input-distribution optimization

Output distribution, Pðgjc1Þ, was computed for 30 values of c1 equally

spaced in the log scale from logðc1Þ ¼ �1 to logðc1Þ ¼ 1:5 (see

Model parameters below). Discretization captures spatial averaging of

the diffusing inputs (exponentially decaying from the source) by the

cells (18). Using a higher resolution over the input range did not

increase the capacity significantly, since optimizing over input distribu-

tion resulted in discrete (spaced out) inputs. Constrained nonlinear optimi-

zation with a sequential quadratic programming method (19) was used to

numerically optimize over the input distribution, Pinðc1Þ, and compute

channel capacity. This optimization was implemented in MATLAB

R2011a.
Model parameters

The range of input and noise parameters was selected to match that of

experimental measurements of the morphogen Hunchback in the

Drosophila embryo (9). The conclusions above were unaffected by

changing the parameters, as long as the feed-forward loops (FFLs) had

dynamics with nontrivial steady states. However, for the figures and
Biophysical Journal 104(5) 1170–1180
numbers quoted in the text, the parameters used were ag ¼ bg ¼ 100,

by ¼ 10, ay ¼ 1, Kxy ¼ Kxg ¼ Kyg ¼ 1, H ¼ 1, q ¼ 1, ε ¼ 0.001.
RESULTS

Noise correlations enhance capacity

First, we quantify how correlations in noise of multiple
inputs enhance the rate of information transmission,
following closely the approach taken by Tkacik et al. (20).
Consider two TFs with concentrations c1 and c2 that
regulate the expression level of a gene (denoted as g). These
values can vary, for example, as a function of space, as in the
case of morphogens along an embryo. The frequency of
observing a particular concentration occurrence, c1 and
c2, is given by PTFðc1; c2Þ. The entropy—or uncertainty—
of the inputs is maximized when this distribution is
uniform, or all concentrations are equally likely, which
implies that the maximum amount of information is
gained when the TF concentrations are determined
precisely. Of course, our aim is to maximize not the entropy
in c1;2 but rather the information conveyed to the expression
level, g.

The noise in the expression levels results in a distribution
of g for fixed TF concentrations, Pðgjc1; c2Þ. Equivalently,
we can fix the expression level g and consider the corre-
sponding distribution of TFs, Pðc1; c2jgÞ, assuming that
there is unique set of inputs for every value of g. The
two distributions are related by Bayes’ rule. The amount
of information communicated from c1;2 to g is given by
the mutual information between the distributions of c1;2
and g (10),

Iðg; c1; c2Þ ¼ �
Z

dc1dc2PTFðc1; c2Þ log PTFðc1; c2Þ

þ
Z

dgPexpðgÞ �
Z

dc1dc2Pðc1; c2jgÞ log Pðc1; c2jgÞ;
(1)

where the distribution of expression level g is given by
PexpðgÞ ¼

R
dc1dc2Pðgjc1; c2ÞPTFðc1; c2Þ.

We assume that the noise in c1;2 for a fixed expression
level g is small and distributed as a Gaussian around the
mean value, cðgÞ,

Pðc1; c2jgÞ ¼ 1

2p
ffiffiffiffiffiffijSjp exp

�
� 1

2
ðc� cðgÞÞTS�1ðc� cðgÞÞ

�
;

(2)

where c ¼ ðc1; c2Þ, and S is the covariance matrix over the

conditional probability for fixed g, or the noise covariance
matrix, SijðgÞ ¼ hðci � ciðgÞÞðcj � cjðgÞÞi.

The small-noise approximation says that it is meaningful
to think of a mean one-to-one input-output response, which
is what is commonly measured in experiments. We expand
around the mean response to the next order. The approxima-
tion, although strong, has been verified for a variety of



FIGURE 1 Benefit of correlated noise. (Left) Uncorrelated noise. Each

color corresponds to a particular output response, g. Due to noise, many

inputs (c1, c2) correspond to the same color output. For effective signaling,

the outputs (and corresponding mean inputs, marked as stars) must be suffi-

ciently spaced to avoid ambiguity. In this picture, four different outputs can

be reliably communicated, corresponding to two values of c1 and c2 which

can be selected independently. (Right) The two inputs have correlated noise,

as reflected in the ellipsoidal scatter of input points ðc1; c2Þ corresponding to
the same output. Six distinct outputs can be reliably communicated due to

smaller spread of noise in one direction. However, the nontrivial tilingmeans

that the six allowed values of each input cannot be selected independently.
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regulatory systems (see, for example, Bicoid-Hunchback in
Gregor et al. (9) and Little et al. (21) or, for other examples,
Raser and O’Shea (22), Newman et al. (23), and Rosenfeld
et al. (24)), and it enables us to analytically calculate the
optimal distribution. We will relax these assumptions later
with a numerical approach. The mutual information under
this approximation is given by

Iðg; c1; c2Þ ¼ �
Z

dc1dc2PTFðc1; c2Þ log PTFðc1; c2Þ

þ 1

2

Z
dc1dc2PTFðc1; c2Þ log

���S�1ðgðcÞÞ��
4p2e2

	
;

(3)

where S�1 is evaluated at the mean value of expression level
g corresponding to a given c.

To find the channel capacity, Eq. 2 is optimized for the
input distribution, PTFðc1; c2Þ. With the probability distribu-
tion’s normalization constraint introduced using a Lagrange
multiplier, the optimal distribution must satisfy

d

dPTFðc1; c2Þ
�
Iðg; c1; c2Þ � l

Z
dc1dc2PTFðc1; c2Þ

�
¼ 0: (4)

The optimal input distribution in the small-noise approxi-
mation (Eq. 4) is given by

P�
TFðc1; c2Þ ¼ 1

2peZ

1ffiffiffiffiffiffijSjp ; (5)

where Z is the normalization constant.
The maximum mutual information, or channel capacity,

for transmitting information from TF concentrations to
expression level is

I� ¼ log2 Z ¼ log2

2
4 1

2pe

Z Z1
cmin

dc1dc2
1ffiffiffiffiffiffijSjp
3
5: (6)

We have constrained the input concentration to lie in the
normalized range, c1;2˛½cmin; cmax ¼ 1�. The minimum
concentration is set by the molecular nature of the input:
a minimum of one input molecule per cell is required.

We can repeat the same calculation for one TF while
neglecting the other, effectively ignoring the covariance of
the noise (off-diagonal components of S). With no covari-
ance, the noise distribution is separable, Pðc1; c2jgÞ ¼
Pðc1jgÞPðc2jgÞ. The optimal input concentration for TF1
will be P�

1ðc1Þ � 1=
ffiffiffiffiffiffiffi
S11

p
, and its channel capacity will be

I�1 � log
R
dc1 1=

ffiffiffiffiffiffiffi
S11

p
; expression for the other TF will be

similar.
For the simple case where S is independent of c, the

channel capacity of the two TFs can be decomposed into
its individual and joint contributions,
I� ¼ I�1 þ I�2 �
1

2
log
�
1� r2

�
; (7)

where I�1;2 is the channel capacity of the TFs individually,
and r ¼ S12=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S11S22

p
is the noise correlation coefficient
for TF concentrations. Accounting for noise correlation
enhances the rate of information transmission. In fact, in
the limit of perfect correlation, r/51, the capacity is in-
finite. This is expected, since under the small-noise approx-
imation and perfectly correlated noise, some combination of
inputs is always noise-free. Noise-free continuous variables
can transmit infinite information. Fig. 1 is a pictorial repre-
sentation of how noise correlations are beneficial. Essen-
tially, the information is encoded in a combination of the
two inputs (such as their difference), which is subject to
less noise.

In general, the optimal input distribution (Eq. 6) is not
separable to individual components, namely,

P�
TFðc1; c2ÞsP�

1ðc1ÞP�
2ðc2Þ; (8)

where P�
1;2 is the marginal distribution for c1;2. In a sense,

�
PTFðc1; c2Þ is an entangled distribution, where the concen-
tration of one TF determines the probability of observing
a certain concentration of the other. Biologically, this
hints at upstream interactions between the TFs, the form
of which should be predictable from the nature of the noise
correlations.

The above abstract results are not surprising. The more
important question is whether noise can be correlated, i.e.,
Pðc1; c2jgÞsPðc1jgÞPðc2jgÞ, for the physical process of
binding and unbinding of multiple TFs to a promoter region.
We demonstrate this below using competing TF modules.
Competing TFs

TFs regulate gene expression levels by binding to cis-regu-
latory regions on the DNA. The design of these regions is
Biophysical Journal 104(5) 1170–1180
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highly complex in both prokaryotes and eukaryotes, with
overlapping TF binding sites occurring frequently
(15,25,26).

We write a simplified model of the two extremes of over-
lapping binding sites (Fig. 2). The dominant source of noise
is assumed to be the intrinsic noise from fluctuations in
binding/unbinding of TFs to the promoter; we address the
validity of neglecting the diffusion noise in the TF concen-
tration in the Discussion section. Details of RNAP assembly
and transcription are coarse-grained to a simple TF binding
picture. Nonetheless, we will show that this simple model
captures the essential role of noise correlations in a regula-
tory network.

Following the approach of (27), let n1;2 be the fractional
occupation of the binding site by competing TF1,2.
n1 þ n2<1 is the fractional occupation of the site by either
TF. A binding event can occur only if the site is unoccupied,
1� n1 � n2 of the time.

dniðtÞ
dt

¼ kcið1� n1 � n2Þ � lni i ¼ 1; 2 (9)

The binding rate (on rate) is proportional to the concentra-
tion of the TF, and the off rates are given by constant l. At
thermal equilibrium, these two rates are related through
the principle of detailed balance, kc1=l ¼ expðF1=kBTÞ,
where F1 is the free-energy gain in binding for TF1, with
a similar expression for TF2. We rescale time so that k ¼ 1.

Eq. 10 is a dynamical picture of the fractional occupation
of the binding site by each TF. At steady state, the mean frac-
tional occupation is denoted by n1;2. We incorporate thermal
fluctuations by introducing small fluctuations in F1;2,
capturing thermal kicks of energy that result in binding/
unbinding events by effectively changing the binding energy.
FIGURE 2 Independent versus competing TFs. (A) Nonoverlapping

binding sites. Fractional binding-site occupations, n1;2, are not correlated,

nor is the noise in estimates of c1;2. The expression level, g, is dependent

on both inputs. (B) Overlapping binding sites. n1;2 are dependent, resulting

in correlated noise in estimating c1 and c2.
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We do not worry about fluctuations in c itself, i.e., from the
extrinsic noise; the TF concentrations are the fixed inputs
of the system and do not fluctuate. Fluctuations in the frac-
tional occupation of the binding site, n1;2 effectively intro-
duce noise in the readout of the concentrations, pðnjcÞ.

With this substitution and taking the Fourier transform,
the linearized fluctuations around the mean dn1;2 satisfy

 
d~F1

d~F2

!
¼ kBT

1� n1 � n2

0
BBB@
1þ�iuþ l1

k1c1
1

1 1þ�iuþ l2
k2c2

1
CCCA
�
d~n1

d~n2

	

(10)

where the tilde denotes the Fourier-transform,
d~n1ðuÞ ¼

RN
0

dnðtÞeiutdt. In vectorial form, the relation be-
comes, d~F ¼ Ld~n.
Eq. 11 relates incremental fluctuations in the binding

readout, dn, with fluctuations in free energy, dF. This is
a linear response relation, with the free energy playing the
role of the driving force (for details, see Bialek and
Setayeshgar (27)). Using the fluctuation dissipation theorem
(28), we calculate the power spectrum of noise in n,

SnðuÞ ¼ 2kBT

u
J
�
L�1

�
; (11)

with J denoting the imaginary part. From S, we can
compute the covariance matrix,



dnTdn

� ¼
Z1=tint

�1=tint

du

2p
SnðuÞ: (12)

tint denotes the integration time of the site. For now, we
assume 1=tint/N to compute the instantaneous fluctua-
tions in the binding readout. Later, we will consider biolog-
ically relevant integration times. With proper normalization,
we can compute the correlation coefficient (Fig. 3 A). The
correlation coefficient is negative, since a more than ex-
pected occupation of the site by one TF will clearly result
in less than expected occupation by the other.

Finally, we need to relate the noise in dn to the noise in
the estimated TF concentrations. To do so, we account for
the sensitivity of n to the TF concentrations. For example,
a very large c1 results in n1 ¼ 1 with little noise. This
readout, however, is not very sensitive to changes in c1
and is not useful in detecting concentration changes.
Let us define a matrix Uij ¼ vci=vnj. The covariance matrix
for the noise in TF concentrations is given by
S ¼ hdcTdci ¼ UhdnTdniUT .

In equating the covariance matrix in TF concentration to
S (covariance matrix for a fixed g) of the previous section,
we have introduced the extra assumption that the dominant



FIGURE 3 Competing TFs. (A) Correlation coefficient of readouts n1
and n2, for l ¼ 10�4 and cmin ¼ 10�3 as a function of log input TF concen-

tration. At high concentrations, a higher-than-expected readout of one TF

implies a lower-than-expected readout of the other, resulting in a negative

correlation coefficient. (B) The optimal input distribution for the same

parameter values. (C) The channel capacity in bits for the interacting and

noninteracting case of two TFs (blue and red curves, respectively) as a func-

tion of logarithm of rescaled l. The y-offset is arbitrary. The dashed curve

denotes their difference. At biologically relevant l ¼ 10�4, interacting

TFs have higher channel capacity. (D) The log likelihood of observing

TF concentration ðc1; c2Þ compared to what is expected from independent

distributions. The likelihood of observing both TFs at either low or high

concentrations together is significantly greater. This suggests that one TF

positively regulates the other, feed-forward motif (right).
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noise in the channel going from c to g is from the binding
noise and not the expression level. Noise in g is assumed
negligible and need not be propagated backward and
included in S. Since noise in g is most commonly shot noise
(29), this assumption is reasonable when expression levels
are high. This also means that our results will not depend
on the functional form of g on c (for the case when
they do for one input, see (20,30,31)). We will relax this
assumption below for the numerical simulations of the
feed-forward loop.

We compute the optimal joint distribution of input
concentration, P�

TFðc1; c2Þ, by plugging the covariance
matrix in Eq. 6 (Fig. 3 B). Moreover, Eq. 7 tells us the
channel capacity, or the maximum information-transmission
rate. Fig. 3 C plots channel capacity of two interacting TFs
and two independent ones as a function of logarithm of off-
rate log10ðlÞ. The interacting TFs have a higher channel
capacity in the biologically relevant regime where
l � 10�4 and cmin � 10�3 (see below). This result does not
depend sensitively on the lower bound of the TF concentra-
tion, cmin; in fact, channel capacity is finite even when
cmin ¼ 0. The lower bound is enforced to ensure a minimum
of one signaling molecule in the cell. The channel capacity
has not increased simply because more signaling molecules
are used in the interacting case. In fact, at these parameters,
the mean input TF concentration,

R R
dc1dc2ðc1 þ c2Þ

P�
TFðc1; c2Þ, is ~30% less than that of the noninteracting

channel.
The optimal joint distribution of input concentrations
(Fig. 3 B) is entangled and no longer separable,
P�
TFðc1; c2ÞsP�

1ðc1ÞP�
2ðc2Þ. With an entangled distribution

the system can explore degrees of freedom not present
with two independent input distributions. In Fig. 3 D,
we plot the log likelihood of observing joint concentra-
tion ðc1; c2Þ compared to observing c1 and c2 independently
from their marginal distributions. R ¼ log10 P

�
TFðc1; c2Þ=

P�
1ðc1ÞP�

2ðc2Þ, where P�
1ðc1Þ ¼

R
dc2P

�
TFðc1; c2Þ is the margi-

nal distribution of TF1, with a similar expression for TF2.
Fig. 3 D implies that the two TFs are no longer passive

and in fact cross-regulate each other. It is ~10 times less
likely to observe one TF at a high concentration and the
other at a low concentration simultaneously, compared to
what is expected if they were independent. Similarly, it
is ~10 times more likely to observe high concentrations of
one TF if the concentration of the other is also high.
This suggests that one TF positively regulates the other
(Fig. 3 D, feed-forward motif).

Where does a biological system lie in the abstract param-
eter space sketched above? As noted, we have rescaled time
so that k ¼ 1 and measured concentration in units of
cmax ¼ 1. The only parameters left are the off-rate l and
cmin. In a real cell, we expect a maximum of ~1000 TF mole-
cules (or a dynamic range of 1–1000 TF molecules) in
a volume of � 1 mm3 (32). Hence, the minimum allowed
concentration is cmin ¼ 10�3. A typical equilibrium constant
of TF binding to DNA is Keq � 1010M�1 (33). Putting all
this together, we find l � 10�4. It is possible, then, that
a real biological regulatory system can transmit more infor-
mation by incorporating overlapping binding sites and an
upstream positive regulation between the TFs.
Integration time and cooperativity

To compute the channel capacity above, we used the instan-
taneous variance of the binding-site fractional occupation,
hdnðtÞ2i. In reality, however, a cell will integrate the occupa-
tion of the binding site for some time. The general theory
proposed above is also valid in the limit tint/N. A longer
integration time typically decreases both the variance and
covariance by a factor 1=tint; the correlation coefficient r
is unaffected. An entangled joint distribution of inputs is
in general still more optimal than a separable one. However,
the specific form of the frequency dependence of the noise
can make the role of integration time more complicated.
We examine information transmission in the above model
for biologically relevant integration times.

The binding of a TF is a binary—on/off—signal for tran-
scription of mRNA. The notion of a fractional occupation
inherently assumes averaging over a series of binding and
unbinding events. The first stage of integration is through
transcription: the amount of time a TF is bound to DNA is
approximately proportional to the amount of mRNA tran-
scribed. Therefore, the lifetime of the mRNA, te, sets the
Biophysical Journal 104(5) 1170–1180
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transcriptional integration timescale. If mRNA lifetime is
long, more mRNA molecules accumulate, resulting in a
more precise value of the average time TF was bound.
mRNAs in turn translate into protein; accumulation of
proteins, with lifetime tg, is the second stage of integration.

Although generally tg[te (34), translation is a discon-
tinuous process, with other sources of interruption besides
binding fluctuations, i.e., chromatin remodeling and
mRNA splicing in eukaryotes (35) and transcriptional
bursting in prokaryotes (36). Naively, transcriptional inte-
gration removes fluctuations with frequencies higher than
t�1
e ; translational integration has no frequency depen-
dence—because it is punctuated—and simply reduces the
variance of fluctuations by a factor of 1=tg. After the inte-
gration, the binding noise is estimated as



dnTdn

�
z

1

tg

Z1=te
�1=te

du

2p
SnðuÞ: (13)

The power spectrum for interacting and noninteracting TFs
is shown in Fig. 4 A from analytical calculations (Eq. 12)

and numerical simulations of Eq. 10 (Methods). For a nonin-
teracting TF, assuming kc[l, n fluctuates on the timescale
ðkcÞ�1 (see derivation in Bialek and Setayeshgar (27)).
Surprisingly, interacting TFs also show fluctuations at the
longer timescale, l�1; refer to Fig. 4 B and the power spec-
trum in Fig. 4 C. However, the long wavelength fluctuations
are almost perfectly anticorrelated between the two readouts
A

C D

B

FIGURE 4 Integration time. (A) Power spectrum of the fluctuations in

fractional binding, n, for both competing and independent TFs. The analyt-

ical calculation is in good agreement with simulation results (shown here

for k ¼ 1, c ¼ 0:01, and l ¼ 10�4; see Methods). (B) A typical time-series

of fluctuations in n1;2 (red and green curves) exhibiting short-wavelength

fluctuations (timescale ðkcÞ�1) and long-wavelength fluctuations (timescale

l�1). The long-term fluctuations are almost perfectly anticorrelated and can

be removed by averaging the two inputs (blue curve). (C) Analytical power

spectrum of the competing (left) and independent (right) TFs. Cross-power

spectral density is also plotted for the competing case, which is negative

because of the anticorrelations. The width of the power spectrum is on

the order of kc for independent TFs but much narrower, on the order of l,

for competing TFs. (D) Channel capacity as a function of the base-10 loga-

rithm of normalized integration time for both types of TFs. Competing TFs

outperform independent TFs for integration times up to � 103ðkcmaxÞ�1.
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n1 and n2 ðr/� 1Þ; when the readouts are combined, the
remaining fluctuations have timescale ðkcÞ�1. Since the
power spectrum of the competing TFs has a narrower width
l, the integration time must be longer than l�1 for the noise
to change substantially. TF dissociation rates can be slow,
l � 10�3s�1 (33,37). A typical mRNA lifetime of minutes,
te � 102s averages out the fast fluctuations at rate k � 1 s
(assuming a typical TF concentration of 100 nM) but does
not filter the low-frequency fluctuations at rate l. The long
protein lifetime, tg, typically many minutes to hours (34),
averages over many binding and unbinding events.

We explicitly compute the channel capacity for
competing and independent TFs as a function of the integra-
tion time (Fig. 4 D). The correlation coefficient of the fluc-
tuations between the readouts does not diminish with
increasing integration time. For low dissociation rates,
kcmax=l ¼ 104, competing TFs transmit more information
than independent TFs up to an integration time of
103=kcmax, � 102s using the above parameters, which is
comparable to the biologically relevant integration time
set by mRNA lifetime. We also explored the impact of coop-
erative binding of TFs by adding a Hill coefficient, l, to the
concentrations in Eq. 10 ðc1;2/cl1;2Þ. The relative advan-
tage of competing TFs disappears with increasing coopera-
tivity. When l ¼ 5, the advantage of competing TFs
disappears for any biologically relevant integration time.
For l ¼ 0:5, however, the channel capacity is higher with
competition—a lager increase compared with the uncooper-
ative case—and persists to arbitrary large integration times,
tint/N. It is conceivable that competing TFs may transmit
more information than independent TFs in the limit of low
dissociation rates or negative cooperativity for biologically
relevant integration times; see the Discussion section for
the importance of diffusion noise and its connection to
cooperativity.
Feed-forward motif

The fact that interacting TFs have correlated noise is not
surprising. The entangled optimal input distribution calcu-
lated above implied that one TF positively regulated the
other upstream, reminiscent of a feed-forward motif. Natu-
rally, the question arises whether a realistic biological model
of feed-forward gene regulation can take advantage of corre-
lated noise in the inputs. Can dynamical joint repression/
activation of a target gene encode the signal in a combination
of the two correlated inputs that is subject to less noise? Is it
possible to optimize the input distribution using realistic
gene regulatory modules? We answer these questions by
numerically computing channel capacity of a FFL, where
upstream, one TF regulates the other, and downstream,
both jointly regulate the expression level of the target
gene. Another purpose of the numerical approach is to relax
the restrictive assumptions required for the above analytical
derivations, in particular the small-noise approximation,
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Gaussian form of the noise, one-to-one correspondence
between input TF concentrations and the output expression
level, and negligible output noise.

In the following analysis, we omit the details of how fluc-
tuations in the readout of TF concentrations become corre-
lated—one mechanism is overlapping binding sites (see
above)—and simply introduce a general phenomenological
model of input noise (Methods). Although many micro-
scopic mechanisms can potentially generate correlated
noise (interference), upstream cross-regulation of TFs is
limited to certain well characterized gene-regulatory
modules. Our purpose is first to confirm that typical gene
regulatory networks can generate a close-to-optimal en-
tangled distribution, and second to check whether Hill-
type regulatory logic can combine correlated input noise,
for example, add anticorrelated inputs, to maximize infor-
mation transmission.

In the feed-forward motif, input TF X regulates TF Y, and
both jointly regulate the expression level g of the target
gene. Since each regulatory function can be either an acti-
vator (positive) or a repressor (negative), there are eight
types of FFLs (16). If the sign of the direct regulation of g
by X is the same as the sign of regulation of g by X through
Y (sign of X-to-Y regulation multiplied by that of Y-to-g),
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FIGURE 5 Numerical simulation of the feed-forward motif. There are 16 type
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unique types of FFL (Fig. 5). The model of competing TFs
considered above closely resembles FFL Type 2 (þþþOR;
Fig. 5).

We have systematically simulated the stochastic
dynamics of all FFL types for a range of input TF concen-
trations (see Methods). We focus on the intrinsic noise in
the joint regulation of g by TFs X and Y, which has two sour-
ces: output noise due to stochastic synthesis and degradation
of g, and input noise in readouts of TF concentrations. The
input noise of TF X is correlated with that of Y with corre-
lation coefficient r. The extrinsic contribution of noise
from the upstream regulation of Y by X is considered negli-
gible; its inclusion does not qualitatively change our results.
The cross-regulation sets up the joint distribution of X and Y,
Pðc1; c2Þ, for a given input distribution of X, Pinðc1Þ.
The probability of observing expression level g for input

concentration c1, Pðgjc1Þ, is computed by sampling the
steady-state expression levels for many runs. As is evident
in Fig. 5 A, the noise distribution Pðgjc1Þ is not Gaussian
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in general; nonlinearities in the model result in lopsided
distributions. Furthermore, the incoherent FFLs are nonmo-
notonic functions of input c1 to g. The same expression level
g can correspond to more than one intended input, also in
contrast to the earlier assumptions.

We computed the channel capacity of each FFL by
numerically optimizing mutual information between output
distribution, pðgÞ ¼ R Pðgjc1ÞPinðc1Þdc1, and TF X input
distribution, Pinðc1Þ over all input distributions (see
Methods). Coherent FFLs have generally a higher capacity
than the incoherent ones; on average, coherent AND loops
can transmit 2.8 bits vs. 1.6 bits for incoherent ANDs,
whereas for OR networks the capacity is 3.1 bits vs. 2.4
bits. The nonmonotonicity of the incoherent networks
creates ambiguities in mapping the output to the intended
input. Correlations in fluctuations of readouts of X and Y
concentrations increase channel capacity in all FFLs
(Fig. 5 B). Networks where X and Y regulate g with the
same sign (both activate or both repress g) enhance their
channel capacity when the input noise correlation coeffi-
cient, r, is negative; networks with opposite signs improve
with positive r. This is expected, since when X and Y regu-
late g in the same way, inputs are effectively added; adding
two channels with anticorrelated noise reduces the noise. In
a similar way, subtracting inputs with correlated noise
results in noise reduction. For our choice of parameters,
we observe, for example, a 13% increase in channel
capacity of Type 1 Coherent FFL, þþþAND (sign of X-Y,
X-G, and Y-G regulation, respectively), when r ¼ �1

compared to r ¼ 0; coherent FFL þ��OR, which roughly
correspond to our earlier model of TFs competing for the
same binding site, showed an improvement of 31%. Other
choices of parameters produced similar results.

We claimed above that interacting TFs with an optimal-
input joint distribution outperformed noninteracting TFs
when noise correlations were incorporated, despite the
increase in the noise of the individual channels from compe-
tition. This observation broadly holds in our simulations.
For example, the highest-capacity network, FFL ��þOR,
has a channel capacity of 4.0 bits, with an input-noise corre-
lation coefficient r ¼ 1; whereas the same network with the
variance of input noise reduced by a factor of 2 (q ¼ 0:5; see
Methods) and no correlation has a capacity of 3.7 bits.
Incorporating correlations at the expense of higher noise
variance seems to be a beneficial strategy. Lastly, we
stressed the importance of up-stream cross-regulation
between the two TFs as a means of constructing the optimal
entangled joint distribution. To confirm that the gain in
capacity from noise correlations is not simply due to a reduc-
tion in noise by a clever addition/subtraction of the inputs at
the module regulating g, we compared the maximum gain in
capacity from correlations for each network to its sister
network (sign of X-Y regulation flipped). Fig. 5 C shows
that the upstream X-Y regulation is instrumental in deter-
mining the gain; whether X activates or represses Y further
Biophysical Journal 104(5) 1170–1180
optimizes the input joint distribution and in turn the channel
capacity.
DISCUSSION

We showed that quite generally, a signaling pathway with
interference, that is, correlations in input noise due to micro-
scopic interactions of the signaling molecules, can optimize
information transmission by implementing cross talk
upstream between the interacting molecules, such that the
concentration of one input depends on the other.

Concentration-dependent transcriptional regulation is
particularly important at the developmental stage. The
concentrations of morphogens dictate cell fate, for example,
resulting in patterning of the Drosophila embryo along
the dorsoventral axis (38). It is likely that the embryo has
optimized information transmission to ensure accurate
patterning and later development. Gene regulation using
a combination of TFs is also a common theme in develop-
ment (39).

Xu et al. (40) have observed the feed-forward motif in
regulation of the gene Race in the Drosophila embryo.
They report that the intracellular protein Smads sets the
expression level of zerknüllt (zen), and then Smads in
combination with zen (twofold input) directly activates
Race. Analysis of the binding site of Smads and zen reveals
slight overlaps, and experiments indicate that one protein
facilitates binding of the other to the enhancer. This interac-
tion can result in a similar positive correlation coefficient in
the TF-concentration estimates derived above. The previ-
ously proposed suggestion (40) that the feed-forward motif
increases sensitivity to the input signal does not explain why
the target is regulated by both the initial input and the target
TF. Proposed dynamical features associated with the FFL
(15,16) do not explain the need for overlapping binding sites
and TF interactions at binding.

Another example of a feed-forward motif coupled to
binding interactions is the joint regulation of even-skipped
(eve) stripe 2 by bicoid (bcd) and hunchback (hb). Small
et al. (3) report cooperative binding interactions between
bcd and hb and a clustering of their binding sites in the
promoter region. Upstream, bcd positively regulates tran-
scription of hb. Similarly, Ip et al. (4) have observed joint
activation of the gene snail (sna) by twist (twi) and dorsal
(dl), which also exhibit cooperative binding interactions.
dl directly regulates transcription of twi upstream.

More generally, other forms of cross talk besides tran-
scriptional regulation can be used. For instance, in regula-
tion of anaerobic respiration in Escherichia coli,
regulators NarP and NarL are jointly regulated through
phosphorylation by histidine kinase NarQ. NarL is also
phosphorylated by kinase NarX. Downstream, NarP and
NarL share the same DNA binding site (41). However, it
is not clear whether optimizing channel capacity is relevant
for this system. It is also possible that interference is



Cross Talk and Interference Enhance Signaling 1179
implemented using schemes other than DNA binding, for
example, through cooperative interactions of signaling
molecules with scaffold proteins (42).

We have shown that compared to noninteracting TFs, TFs
interacting at overlapping binding sites and with upstream
cross-regulation can enhance information transmission.
This is consistent with frequent observations of the feed-
forward motif ending in overlapping binding sites in devel-
opmental gene networks. Although it has been proposed
previously that the feed-forward motif can optimize infor-
mation transmission in regulatory networks (30), we empha-
size that our approach is fundamentally different, since it
stems from correlated binding noise, and it requires the
physical existence of TF interactions at the binding level.
This is indeed what is experimentally observed in the three
examples discussed above. Diamond motifs, where inputs
are transmitted independently and then recombined later,
have also been proposed as mechanisms for increasing
gain in signaling pathways (43).

The key assumptions in the above model were as follows.
The primary source of noise is intrinsic input noise from
readouts of TF concentrations, and extrinsic noise from
cross-regulation is negligible. Inclusion of extrinsic noise
simply reduces the overall channel capacity and does not
modify the relation between input noise correlations and
upstream cross-regulation. In the case of TFs competing
for the same binding site, the intrinsic noise was assumed
to be dominated by binding fluctuations as opposed to
diffusion noise. This assumption is valid in the limit of
low dissociation rates and low cooperativity (44). Moreover,
this limit can be potentially consistent with biologically
relevant integration times: competing TFs with low
dissociation rates have a higher channel capacity than
independent TFs, even when integration time is comparable
to the typical mRNA lifetime; with negative cooperativity,
the integration time can be arbitrarily large. Even if
noise is dominated by diffusion, other mechanisms—such
as di- or multimerization of the signaling molecules, or
cooperative active transport—may generate correlations in
diffusion noise. The same framework can then connect
multimerizaiton of signaling molecules to their upstream
cross-regulation. Although our example focused on the
particular case of competing TFs, we stress that in general
any signaling pathway with correlated noise can transmit
more information when optimized with cross talk between
the inputs.

A myriad of logical regulatory circuits have been
proposed through the use of overlapping binding sites and
interacting TFs (26,32). It is worthwhile to see whether
the upstream TF regulatory network of these systems can
be correctly predicted from TF binding-site overlap or other
interactions using the methodology outlined above (Eq. 6).
Such analysis requires knowledge of the input noise, which
can be obtained by a bioinformatics approach, where the
binding sequence of each TF is examined for overlap, or
by direct measurement of the noise using single-molecule
techniques (37) for other types of interactions.
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